• Title/Summary/Keyword: Landing System

Search Result 461, Processing Time 0.023 seconds

Automatic Landing in Adaptive Gain Scheduled PID Control Law

  • Ha, Cheol-Keun;Ahn, Sang-Won
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2003.10a
    • /
    • pp.2345-2348
    • /
    • 2003
  • This paper deals with a problem of automatic landing guidance and control system design. The auto-landing control system for the longitudinal motion is designed in the classical PID controller. The controller gains are properly adapted to variation of the performance using fuzzy logic as a gain scheduler for the PID gains. This control logic is applied to the problem of the automatic landing control system design. From the numerical simulation using the 6DOF nonlinear model of the associated airplane, it is shown that the auto-landing maneuver is successfully achieved from the start of the flight conditions: 1500 ft altitude, 250 ft/sec airspeed and zero flight path angle.

  • PDF

Effects of Landing Tasks on the Anterior Cruciate Ligament Injury Risk Factors in Female Basketball Players (여자 농구 선수들의 착지 유형이 전방십자인대 손상위험 요인에 미치는 영향)

  • Lee, Gye-San;Lim, Bee-Oh
    • Korean Journal of Applied Biomechanics
    • /
    • v.24 no.4
    • /
    • pp.385-390
    • /
    • 2014
  • The purpose of this study was to investigate the effects of landing tasks on the anterior cruciate ligament (ACL) injury risk factors in female basketball players. Fifteen female basketball players performed a drop landing and a drop landing with a vertical jump on the 40 cm height box. Three-dimensional motion analysis system and ground reaction force system was used for calculate the ACL injury risk factors. Paired samples t-test with Bonfferoni correction were performed. The drop landing with a vertical jump had the higher knee flexion angle, peak knee varus moment, trunk flexion angle than a drop landing. However, the drop landing had the higher trunk rotation angle than a drop landing with a vertical jump. These results indicate that seemingly minor variations between drop landing and drop landing with a vertical jump may influence the ACL injury risk factors. Caution should be used when comparing studies using different landing tasks.

Vision-based Autonomous Landing System of an Unmanned Aerial Vehicle on a Moving Vehicle (무인 항공기의 이동체 상부로의 영상 기반 자동 착륙 시스템)

  • Jung, Sungwook;Koo, Jungmo;Jung, Kwangyik;Kim, Hyungjin;Myung, Hyun
    • The Journal of Korea Robotics Society
    • /
    • v.11 no.4
    • /
    • pp.262-269
    • /
    • 2016
  • Flight of an autonomous unmanned aerial vehicle (UAV) generally consists of four steps; take-off, ascent, descent, and finally landing. Among them, autonomous landing is a challenging task due to high risks and reliability problem. In case the landing site where the UAV is supposed to land is moving or oscillating, the situation becomes more unpredictable and it is far more difficult than landing on a stationary site. For these reasons, the accurate and precise control is required for an autonomous landing system of a UAV on top of a moving vehicle which is rolling or oscillating while moving. In this paper, a vision-only based landing algorithm using dynamic gimbal control is proposed. The conventional camera systems which are applied to the previous studies are fixed as downward facing or forward facing. The main disadvantage of these system is a narrow field of view (FOV). By controlling the gimbal to track the target dynamically, this problem can be ameliorated. Furthermore, the system helps the UAV follow the target faster than using only a fixed camera. With the artificial tag on a landing pad, the relative position and orientation of the UAV are acquired, and those estimated poses are used for gimbal control and UAV control for safe and stable landing on a moving vehicle. The outdoor experimental results show that this vision-based algorithm performs fairly well and can be applied to real situations.

Design of A Simulation S/W for Evaluation of Auto-Landing Algorithms

  • Yoon sug-joon;Kim kang-soo;Ahn jae-joon
    • Proceedings of the Korea Society for Simulation Conference
    • /
    • 2003.06a
    • /
    • pp.3-8
    • /
    • 2003
  • A Simulation S/W is developed to evaluate performances of MLS (Microwave Landing System) and IBLS(Integrated Beacon Landing System) in precision auto-landing. For this study classical PID and optimal LQG controllers are developed as well as mathematical models of MLS and IBLS. Ship-landing condition is also considered by assuming sinusoidal movement of the ship in the pitch direction. The simulated aircraft is F-16 in the study of precision auto-landing. For the integrated simulation environment GUI windows are designed for input of parameter values necessary for simulation, such as vehicle performance and environmental data. For validation and verification of models various comparison graphs of simulation outputs are comprised in the GUI design as well as 3D visual simulation of vehicle dynamics.

  • PDF

Design and Fabrication of Multi-rotor system for Vision based Autonomous Landing (영상 기반 자동 착륙용 멀티로터 시스템 설계 및 개발)

  • Kim, Gyou-Beom;Song, Seung-Hwa;Yoon, Kwang-Joon
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.12 no.6
    • /
    • pp.141-146
    • /
    • 2012
  • This paper introduces development of multi-rotor system and vision based autonomous landing system. Multi-rotor platform is modeled by rigid body motion with Newton Euler concept. Also Multi-rotor platform is simulated and tuned by LQR control algorithm. Vision based Autonomous Landing system uses a single camera that is mounted Multi-rotor system. Augmented reality algorithm is used as marker detection algorithm and autonomous landing code is test with GCS for the precision landing.

Design of Multisensor Navigation System for Autonomous Precision Approach and Landing

  • Soon, Ben K.H.;Scheding, Steve;Lee, Hyung-Keun;Lee, Hung-Kyu
    • Proceedings of the Korean Institute of Navigation and Port Research Conference
    • /
    • v.1
    • /
    • pp.377-382
    • /
    • 2006
  • Precision approach and landing of aircraft in a remote landing zone autonomously present several challenges. Firstly, the exact location, orientation and elevation of the landing zone are not always known; secondly, the accuracy of the navigation solution is not always sufficient for this type of precision maneuver if there is no DGPS availability within close proximity. This paper explores an alternative approach for estimating the navigation parameters of the aircraft to the landing area using only time-differenced GPS carrier phase measurement and range measurements from a vision system. Distinct ground landmarks are marked before the landing zone. The positions of these landmarks are extracted from the vision system then the ranges relative to these locations are used as measurements for the extended Kalman filter (EKF) in addition to the precise time-differenced GPS carrier phase measurements. The performance of this navigation algorithm is demonstrated using simulation.

  • PDF

An operational analysis and dynamic behavior for a landing gear system using ADAMS (ADAMS를 이용한 항공기 착륙장치 작동 동적거동 해석)

  • Choi, Sup;Kwon, Hyuk-Beom;Chung, Sang-Joon;Jung, Chang-Rae;Sung, Duck-Yong
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.31 no.6
    • /
    • pp.110-117
    • /
    • 2003
  • The operational characteristics of the landing gear retraction/extension depend on the complexity of design variables operational/environmental conditions. In order to meet the requirements of minimum stow area and performance, the integration of the landing gear system requires operational kinematic and dynamic analysis considering an effect of its related system. This study investigates operational dynamic behaviors of the T-50 landing gear system using ADAMS. Taking into account for various operational/environmental conditions, an analysis of dynamic behavior on the landing gear operational characteristics is performed with experience derived from a wide range of proprietary designs. Analytical results are presented for discussing the effects of temperature, aerodynamic and maneuver load on normal/emergency operation of the landing gears and doors. This analysis leads us to the conclusion that the proposed program is shown to be a better quantitative one that apply to a new development and troubleshooting of the landing gear system.

Nose Landing Gear Drop-test Simulation using Numerical Analysis about Orifice (오리피스 유량해석을 통한 전륜 착륙장치의 착륙성능평가)

  • Hwang, Jaeup;Bae, Jaesung;Hwang, Jaihyuk;Hong, Yehsun;Park, Sangjoon;Chung, Taekyong
    • Journal of Aerospace System Engineering
    • /
    • v.8 no.1
    • /
    • pp.18-23
    • /
    • 2014
  • This thesis is simulated a aircraft nose landing gear drop-test. flow rate-to-pressure difference characteristics of damping orifices for a nose landing gear is investigated by CFD analyses. Orifice is kind of poppet valve type. it is simulated pressure drop with variable orifice area. it is simulated landing gear model by using ADAMS with CFD result. It's performance evaluated landing gear drop-test and analyzed the results.

Vision Processing for Precision Autonomous Landing Approach of an Unmanned Helicopter (무인헬기의 정밀 자동착륙 접근을 위한 영상정보 처리)

  • Kim, Deok-Ryeol;Kim, Do-Myoung;Suk, Jin-Young
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.15 no.1
    • /
    • pp.54-60
    • /
    • 2009
  • In this paper, a precision landing approach is implemented based on real-time image processing. A full-scale landmark for automatic landing is used. canny edge detection method is applied to identify the outside quadrilateral while circular hough transform is used for the recognition of inside circle. Position information on the ground landmark is uplinked to the unmanned helicopter via ground control computer in real time so that the unmanned helicopter control the air vehicle for accurate landing approach. Ground test and a couple of flight tests for autonomous landing approach show that the image processing and automatic landing operation system have good performance for the landing approach phase at the altitude of $20m{\sim}1m$ above ground level.

An analysis on the ground impact load and dynamic behavior of the landing gear system using ADAMS (ADAMS를 이용한 항공기 착륙장치 지상 충격하중 및 동적거동 해석)

  • Choi, Sup;Lee, Jong-Hoon;Cho, Ki-Dae;Jung, Chang-Rae
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.30 no.4
    • /
    • pp.114-122
    • /
    • 2002
  • The integration of the landing gear system is a complex relationship between the many conflicting parameters of shock absorption, minimum stow area, complexity, weight and cost. Especially ground impact load and dynamic behaviors greatly influence design load of landing gear components as well as load carrying structural attachment. This study investigates ground impact load and dynamic behaviors of the T-50 landing gear system using ADAMS. Taking into account for various operational/environmental conditions, an analysis of shock absorbing characteristics at ground impact is performed with experience derived from a wide range of proprietary designs. Analytical results are presented for discussing the effects of aircraft horizontal and vertical speed, landing attitudes, shock absorbing efficiency. This analysis leads us to the conclusion that the proposed program is shown to be a better quantitative one that apply to a new development and troubleshooting of the landing gear system.