• Title/Summary/Keyword: Landfill Stabilization

Search Result 84, Processing Time 0.03 seconds

Case Study of Remidation and Investigation of Closed Unsanitary Landfill for Prevention of Leachate (비위생매립지 정밀조사 및 침출수 방지를 위한 정비방안 연구)

  • Kim, Sangkeun;Lee, Yongsoo
    • Journal of the Korean GEO-environmental Society
    • /
    • v.13 no.1
    • /
    • pp.5-13
    • /
    • 2012
  • For the last decade the amount of waste has rapidly been increased in South Korea and many waste landfills have been built according to government guidelines specifying required systems such as landfill liner, leachate collecting facilities, final cover system, etc. This effort has led the recently constructed landfills to be under well managed sanitary condition. In a meanwhile closed waste-landfill sites in the past before the adoption of the government guidelines exits under unsanitary condition. In these cases untreated leachate flew out to the surroundings due to the absence of liner and leachate collecting facilities and caused groundwater and soils to be contaminated. Waste generated odor and gas also brought civil complaints. Because environmental influences bring serious problems nearby sites, it is required to have unsanitary waste-landfills to be appropriately treated and managed. A study to evaluate environmental influence and contamination level of surroundings nearby and on the unsanitary landfills is necessary before the establishment of "Management guide of closed landfill site." This paper presents an environmental evaluation for the closed site, Doil-dong landfill, according to "Closed landfill management regulation" by Ministry of Environment. "D" landfill, located in Pyeongtaek city, has possobility to contaminate surrounding surfacewater and groundwater by leakage of leachate. The in-situ stabilization carried out to build the DMW(deep soil mixing cutoff wall) wall and drainage systems.

The Numerical Modeling Study for the Simultaneous Flow of Leachate and LFG in Kimpo Landfill (수도권 매립지에서 침출수-가스의 동시 유동 해석을 위한 전산 모델링 연구)

  • 성원모;박용찬;이광희
    • Journal of the Korean Society of Groundwater Environment
    • /
    • v.6 no.2
    • /
    • pp.101-106
    • /
    • 1999
  • Open dump of refuse causes groundwater and soil contamination by leachate and air pollution by LFG(Landfill Gas). In this paper, in order to perform a study about reduction of high leachate and LFG collection & control, using a 3-D, 2-phase, transient FDM model, the analysis of simultaneous flow of leachate and LFG has been carried out. In present numerical analysis it is assumed that 58 percents of LFG will evaporate to the ambient air and the recharge rate of a landfill be 12 percent of the average precipitation per year. All other data were excerpted at the point of 1995 when three refuse layers had been buried. From numerical analysis we concluded that maximum head value is approximately 26 mH2O<-에이치투오 (2.52 atm) in the center of the system and that installing venting trench plays an important role in landfill stabilization. Evan with the assumption of three layers constructed and low recharge rate applied, it is found that cumulative leachate and LFG productions will be 15.1 million 세제곱미터, 5.58 billion 세제곱미터, respectively after 40 years.

  • PDF

The Effect of Final Cover Installation on the Waste Landfill Stabilization (차단형 최종복토층 설치가 폐기물 매립지 안정화에 미치는 영향)

  • Yoon, Seok-Pyo;Jung, Jinmo;Wei, Jieling
    • Journal of the Korea Organic Resources Recycling Association
    • /
    • v.25 no.2
    • /
    • pp.33-40
    • /
    • 2017
  • In Korea, it is required to install the final cover layer immediately after the end of use of the waste landfill, and to conduct aftercare for 30 years. However, the installation of the final cover layer minimizing the penetration of the rainfall will delay the decomposition of the buried organic wastes and reduce the amount of pollutants released into the leachate. Therefore, at the end of the aftercare period, pollutants might be discharged and cause the pollution of the surrounding environment. In this study, using lab-scale lysimeters, the amount of pollutants discharged into the leachate was observed. At the initial stage, same artificial rainfall was injected, and after 7 months later, different reduced artificial rainfall was injected for 8.4 months assuming as the final soil layer was installed. From the results, it was advantageous in terms of environmental management after the end of the aftercare period to install a temporary cover layer that permits the infiltration of rainfall to some extent rather than to install the final cover layer immediately after the end of use of the waste landfill.

Composition of Degradation and Stabilization in Landfilled Waste (매립폐기물의 분해 성상 및 안정화)

  • Kim, Eun-Ho;Son, Hee-Jung;Sung, Nak-Chang;Heo, Jong-Soo;Kim, Hyeong-Seok
    • Korean Journal of Environmental Agriculture
    • /
    • v.16 no.1
    • /
    • pp.31-36
    • /
    • 1997
  • This study was carried out to analyze the composition of landfill generation gas using vertical pipe wells installed at landfill. The characteristics of composed waste were examined by the open-cut test at H. landfill in Pusan. The waste compositions of landfill layer by Open-cut test indicated that organic matter was average $4.6{\sim}8.78%$ in each landfill. $CH_4$ compositions of gas in each landfill were $49.71{\sim}50.45%$(A-point), $50.39{\sim}53.74%$(B-point), and $58.76{\sim}61.62%(C-point), respectively. The chemical formula of organic matter left in the underground was $C_{36.3}H_{76}O_{30}N_{0.3}S_{0.1}$ Underground temperatures were changed to $18.8{\sim}25.8^{\circ}C$ when the ambient temperature was about $13.4^{\circ}C$. Temperatures with passed times in A, B and C-lysimeter were about $21.1{\sim}22.5^{\circ}C,\;30{\sim}32.5^{\circ}C$ and $35{\sim}38.5^{\circ}C$, respectively. After about 65 day, decomposition rates of organic matter in A, B and C-lysimeter were 9.9%, 14.9% and 22.3%, respectively.

  • PDF

Monitoring of Reinjected Leachate in a Landfill using Electrical Resistivity Survey (전기비저항 탐사를 이용한 매립지의 재주입 침출수 모니터링)

  • Chul Hee Lee;Su In Jeon;Young-Kyu Kim;Won-Ki Kim
    • Geophysics and Geophysical Exploration
    • /
    • v.27 no.3
    • /
    • pp.159-170
    • /
    • 2024
  • The bioreactor method, in which leachate is reinjected into a landfill for rapid decomposition and stabilization of buried waste, is being applied and tested at many landfills because of its numerous advantages. To apply the bioreactor method to a landfill successfully, it is very important to understand the behavioral characteristics of the injected leachate. In this study, electrical resistivity monitoring was performed to estimate the behavior of a landfill leachate in Korea where the bioreactor method was applied. For the electrical resistivity monitoring, a baseline survey was conducted in August 2013 before the leachate was injected, and time-lapse monitoring surveys were conducted four times after injection. The electrical resistivity monitoring results revealed reductions in electrical resistivity in the landfill attributable to the injected leachate, and the change in its characteristics over time was confirmed. In addition, by newly defining the electrical resistivity change ratio and applying it in this study, the spatial distribution and behavior of the leachate over time were effectively identified. More research on optimization of data acquisition and integrated monitoring methods using various techniques should be conducted in the near future.

Monitoring the Leachate Toxicities from a Pilot Landfill Treated with Chemical Oxidation using Hydrogen Peroxide and Aeration (과산화수소수와 통기에 의한 Chemical oxidation법을 적용한 모형 매립지로부터 생성된 침출수의 독성 monitoring)

  • Cho, Eun-Ah;Tameda, Kazuo;Hanashima, Masataka;Yoshijaki, Koudai;Uchida, Masanobu;Higuchi, Sotaro
    • Environmental Analysis Health and Toxicology
    • /
    • v.23 no.4
    • /
    • pp.307-314
    • /
    • 2008
  • 폐기물 매립지의 조기 안전화를 위해 여러 가지 Chemical Oxidation법이 개발되어 왔지만, 이 방법을 폐기물 매립지에 적용하고 난 후에 생성될 수 있는 부산물들이 주변 환경에 영향을 줄 가능성이 있다. 그래서, 이 방법을 실제 매립지에 적용하기 전에, 일본 키타큐슈에 있는 소각재가 묻혀 있는 모형 매립지에 다섯 가지 조건 -A, 콤포스트 추가; B, 과산화수소수 살수; 과산화수소수+공기주입; D, 공기주입; E, control- 을 적용하여 그 효능을 테스트하였고, 이 매립지에서 이 방법들의 적용 후에 생성되는 침출수의 급성 독성을 세 가지 microbiotests를 이용하여 monitoring하였다. 테스트 기간 중, 침출수의 수질은 개선되었고, 그 급성 독성은 점차적으로 감소하였다. 과산화수소수와 공기의 조합을 적용한 후 생성된 침출수의 급성 독성이 가장 빨리 감소하여 폐기물 매립지의 조기 안정화에 도움을 주었다. 이러한 독성 시험 결과는 몇 가지 화학적 parameters와 상관성이 있었고 여기에 사용된 급성 독성 테스트법은, 매립지 안정화를 위한 Chemical Oxidation법의 적용 후, 침출수 수질을 monitoring하는데 적절하였다. 그러므로 폐기물 매립지의 조기 폐지 기준에 독성 시험의 포함을 고려해 볼 필요가 있다고 생각한다.

Effect of Moisture on Stabilization of Municipal Solid Wastes in Anaerobic Landfill (혐기성 폐기물매립지에 있어서 수분이 매립폐기물의 안정화에 미치는 영향)

  • Kim, Hye-Jin;Kim, Joung-Ho;Oh, Dong-Ik;Kim, Seok-Chan;Lee, Nam-Hoon;Kim, Nack-Joo
    • Journal of the Korea Organic Resources Recycling Association
    • /
    • v.13 no.1
    • /
    • pp.124-130
    • /
    • 2005
  • Landfilling is most widely used as the final disposal tool of solid wastes. Solid wastes landfilled are stabilized by microbial degradation which is affected by several factors such as moisture, oxygen, pH, alkalinity, sulphate, nutrient, inhibitor, hydrogen, and temperature. Especially moisture plays a major role in microbial degradation. In this study, the effects of moisture on the degradation of municipal solids waste (MSW) were investigated. Four lysimeters with four different levels of moisture content i.e., 20, 30, 40, and 50% were operated; lysimeters were packed with MSW, and anaerobically operated. Anaerobic lysimeters with higher moisture content produced more $CO_2$ and landfill gases (LFG). It means that the moisture has a positive effect on the microbial degradation.

  • PDF

Utilization of Biosolid for Enhanced Heavy Metal Removal and Biomass Production in Contaminated Soils (중금속 오염 토양 복원 및 바이오메스 생산량 증대를 위한 biosolid 활용)

  • Kim, Kwon-Rae;Naidu, Ravi;Kim, Jeong-Gyu
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.43 no.5
    • /
    • pp.558-564
    • /
    • 2010
  • Cleaning up the landfill soil by phytoremediation in association with biomass production and utilization of biosolid as a soil amendment will be an attractive green technology. In order to examine this integrated green technology, in the current study of pot trial, heavy metal removal rate and biomass production were determined following cultivation of three different plant species in the landfill soil incorporated with biosolid at two different levels (25 ton $ha^{-1}$ and 50 ton $ha^{-1}$). Among the three plant species including Indian mustard (Brassica juncea), giant sunflower (Helianthus giganteus. L), and giant cane (Arundo donax. L), sunflower appeared to produce the largest biomass yield (19.2 ton $ha^{-1}$) and the produced amounts were magnificently increased with biosolid treatment compared to the control (no biosoild treatment). The increased production associated with biosolid treatment was common for other plant species and this was attributed to the biosolid originated nutrients as well as the improved soil physical properties due to the organic matter from biosolid. The elevated heavy metals in soil which was originated from the incorporated biosolid were Cu and Zn. Based on the phytoavailable amount of heavy metals from biosolid, the removed amount by plant shoots were 95% and 165% for Cu and Zn, respectively, when sunflower was grown. This indicated that mitigation of heavy metal accumulation in soils achieved by the removal of metal through sunflower cultivation enables the successive treatment of biosolid to soils. Moreover, sunflower showed heavy metal stabilization ability in the rhizosphere resulting in alleviation of metal release to ground water.

Long-Term Settlement Behavior of Refuse Landfills with Different Fill Ages (매립 연한이 서로 다른 쓰레기 매립지의 장기 침하 거동)

  • Park, Hyeon-Il;Lee, Seung-Rae;Go, Gwang-Hun
    • Geotechnical Engineering
    • /
    • v.14 no.2
    • /
    • pp.21-30
    • /
    • 1998
  • The settlement characteristics of refuse landfills are peculiar because considerable amount of settlement occurs due to the decomposition of refuse organic solids for very long period. The total amount of compression that occurs due to the decomposition in refuse landfill is mainly dependent on the amount of biodegradable refuse solids and fill Ige of the refuse landfill, and the settlement stabilization speed is dependent on the decomposition condition. In order to figure out the settlement characteristics of refuse landfills. a proposed mathematical model is applied to settlement data of refuse landfills with different fill ages. A data bank of model parameters was obtained and the trends were analyzed. The long-term settlement behavior of refuse landfills can be estimated fairly well by the proposed model. The total remaining amount of settlement may be predicted on the basis of the fill age and appropriate two design parameters.

  • PDF

Evaluation of the Stability of Geomembrane Liner System in Closed Waste Landfill (사용종료 폐기물 매립장의 멤브레인 차수시스템 안정성 평가)

  • Lee, Heung-Gil;Oh, Young-In
    • Journal of the Korean Geosynthetics Society
    • /
    • v.9 no.1
    • /
    • pp.39-46
    • /
    • 2010
  • Recently, the effective use of closed waste landfill nearby urban areas has been demanded, because of the lack of the usable land. However, the reuse of closed landfill is needed an adequate stabilization of liner system. But most of these places are consisted of steep slope and hence it is necessary to use the geosynthetics liners in there. Liner system of waste landfills is an important facility which prevents leachate outgoing from the landfills and also groundwater infiltrating from surroundings into the landfills. During the waste disposal stage, differential settlement and tensile stress of the geosynthetic materials could occur due to impact load of trucks and dozers, waste loads and weak foundation soils. In this study, the tensile strength and tracer test were performed to evaluate the stability of geomembrane liner systems. Based on the tensile strength test result of in-situ geomembrane sample, the yield tensile strength maintain the suitable strength by specification and current law. However, according to the tracer test, the damage of geomembrane liner was detected on sanitary landfill section.

  • PDF