• Title/Summary/Keyword: Landfill

Search Result 1,302, Processing Time 0.028 seconds

A Study on High Graded Limestone Population Area (석회석 원소재의 고품위대 조사를 위한 연구)

  • Kim, Jun-Kyoung
    • 한국지구물리탐사학회:학술대회논문집
    • /
    • 2007.06a
    • /
    • pp.343-348
    • /
    • 2007
  • Geophysical methodology using GPR(Ground Penetrating Radar) were applied both to the limestone producing area(Sambo Mine Company & Haksanri Area) and to Landfill area(Mureung Landfill Site). The investigation results resultant from both the limestone producing area(Sambo Mine Company & Haksanri Area) showed that there are a few events reflected from boundaries between caves and basement rocks. Those from landfill area showed that more complicated and small size events are found. These events could be from different electric characteristics of various kinds of composition materials in the landfill site.

  • PDF

Improvement of waste landfill by dynamic compaction method (동다짐공법에 의한 쓰레기매립지반의 개량특성 분석)

  • 정하익;곽수정
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2002.10a
    • /
    • pp.404-410
    • /
    • 2002
  • Dynamic compaction is an efficient ground improvement technique for loose soils and waste landfill. The improvement is obtained by controlled high energy tamping and its effects vary with the soil properties and energy input. This study demonstrated the application of dynamic compaction method for the improvement of waste landfill in construction site. Various tests and measurements such as standard penetration test, bore hole loading test, crater settlement, ground settlement, pore water pressure were peformed during dynamic compaction field test. From the field test results, the efficiency of dynamic compaction method for the improvement of waste landfill was proved.

  • PDF

Case study on the variation of landfill soil properties due to waste materials' characteristics (매립장 폐기물 특성에 따른 지반특성 변화 사례 연구)

  • Kim, Jin-Hwan;Cho, Jin-Woo;Baek, Yong;Lee, Yong-Soo
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2010.09a
    • /
    • pp.1213-1216
    • /
    • 2010
  • Developable areas nearby metropolitan areas, which has high the density of population are limited by highly industrialized. In recent, the redeveloping plans for the finished industrial and resident areas are pushing to resolve this problems. Getting to the exact properties for reclaimed wastes is very important to reuse of landfill. Also, a strategy for how to deal with follow-up measures have to based on the waste characteristics. A lot of environmental problems have been happened in finished waste landfill such as a nasty smell by seepage, pollution of surface and ground water, a poisonous gas and soil contamination. The environment pollution in waste landfill have been studied by many researchers. The goal of this study is estimate the effects for the ground properties with the environmental properties of waste in finished landfill. As the results, the chemical characteristics of seepage in landfill may effect directly or indirectly to capping layer. Therefore, sustainable researches are needed to develop a secure landfill over the long term.

  • PDF

Performance Evaluation of Close Waste Landfill Vertical Slurry Wall(SCW) by Tracer Method (추적자조사기법을 활용한 사용종료매립장 연직차수벽 성능평가)

  • Lee, Dong-Geon;Oh, Young-In;Kim, Kwan-Ho;Cho, Sook-Hee;Bak, Eun-Suk
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2010.09a
    • /
    • pp.1245-1252
    • /
    • 2010
  • Many industrialized countries are confronted with a difficulty about reuse of closed waste landfill. facilities. Especially, the demand of closed waste landfill maintenance and reuse nearby urban area has been increased, because of the shortage of usable land and extend of urban area. For the safe reuse of closed waste landfill, the most important check point is the effect of waste landfill on environment abound them. However, the non-sanitary closed waste landfill generally have no leachate lining system, therefore, the in-situ lining system such as sheet-pile, and vertical slurry wall etc. was needed to prevent the leachate outgoing from the waste landfill. In this paper present the case history of performance evaluation of vertical slurry wall by tracer tests.

  • PDF

A Study on the Adequate Treatment of Municipal Landfill Leachate -A Case Study of Nanjido Landfill Leachate- (도시폐기물 매립지 침출수의 적정처리에 관한 연구 -난지도 폐기물 매립지 침출수를 대상으로-)

  • 이병인
    • Journal of Environmental Science International
    • /
    • v.4 no.3
    • /
    • pp.269-276
    • /
    • 1995
  • An experimental research was conducted in order to study the treatability of municipal landfill leachate using a combined physio-chemical and biological treatment. The leachate was obtained from Nanjido landfill site in Seoul. Several sets of bench-scale sequencing batch reactor(SBR) and physic-chemical reactors were used as experimental apparatus. This experiment lasted for about 2 years. The results are as follows: 1. The characteristics of Nanjido landfill leachate were pH 7.4~8.2, BOD 79~450mg/L, COD 998~1460mg/L, $NH_3-N$ 1380~3412mg/L, 7-P 2.6~7.0mg/L, color 890~1992 unit, and heavy metals are a very small amount. 2. Either physio-chemical or biological treatment of Landfill leachate alone did not work well. So for the adequate treatment of leachate, it was necessary to deal with the physio-chemical pretreatment before biological treatment. And it was found that both electrolysis and ozone treatment are better pretreatments of leachate than others. 3. In this study, landfill leachate was effectively processed by two step : first by electrolysis pretreatment, and secondly by SBR treatment. Thus, the study showed considerable substrate removal of raw leachate, even though the rate of COD removal depended on HRT.

  • PDF

A Study on the Adequate Treatment of Municipal Landfill Leachate -A Case Study of Nanjido Landfill Leachate- (도시폐기물 매립지 침출수의 적정처리에 관한 연구 -난지도 폐기물 매립지 침출수를 대상으로-)

  • Lee, Byeong-In
    • Journal of Environmental Science International
    • /
    • v.4 no.3
    • /
    • pp.117-117
    • /
    • 1995
  • An experimental research was conducted in order to study the treatability of municipal landfill leachate using a combined physio-chemical and biological treatment. The leachate was obtained from Nanjido landfill site in Seoul. Several sets of bench-scale sequencing batch reactor(SBR) and physic-chemical reactors were used as experimental apparatus. This experiment lasted for about 2 years. The results are as follows: 1. The characteristics of Nanjido landfill leachate were pH 7.4~8.2, BOD 79~450mg/L, COD 998~1460mg/L, $NH_3-N$ 1380~3412mg/L, 7-P 2.6~7.0mg/L, color 890~1992 unit, and heavy metals are a very small amount. 2. Either physio-chemical or biological treatment of Landfill leachate alone did not work well. So for the adequate treatment of leachate, it was necessary to deal with the physio-chemical pretreatment before biological treatment. And it was found that both electrolysis and ozone treatment are better pretreatments of leachate than others. 3. In this study, landfill leachate was effectively processed by two step : first by electrolysis pretreatment, and secondly by SBR treatment. Thus, the study showed considerable substrate removal of raw leachate, even though the rate of COD removal depended on HRT.

The Study on Methane Gas Generation Rate from Chon-An Beck-Suk Landfill Site (천안백석매립장을 중심으로 한 메탄가스 발생량에 관한 연구)

  • Jeong, Jin Do;Kim, Jang U;Jeong, In Gwon;Bae, Chan Yeol
    • Journal of Environmental Science International
    • /
    • v.13 no.7
    • /
    • pp.697-701
    • /
    • 2004
  • Most of methane gas result from waste matter in landfill, therefore the persons concerned take an increasing interest in management of gases in landfill. Infrared Gas Analyzer was used to measure components of gases, $CH_4,$ $CO_2,$ $O_2,$ through gas exhausted pipe. To measure amount of the gas flow meter(Portable Hot-Line Current Meter) was used and it was set at right angles with direction of the flow. In this research the total amount of methane gas produced in Beck-Suk Landfill was calculated through FOD method suggested by IPCC. This research found that in Chon-An Beck-Suk Landfill anaerobic resolution was made actively and the amount of methane gas produced there was 54.14%, which is higher than common figure, 50%, in other researches. The components of reclaimed waste matter, especially, organic waste matter can have a great effect of the amount of the greenhouse gases produced in landfill. We can expect that the amount of greenhouse gas will decrease from 2005, when it will be prohibited from carrying kitchen refuse and sludge into landfill.

HYLGS 모델을 활용한 수도권 매립지에서의 침출수-가스의 동시유동 해석에 관한 연구

  • 이광희;박용찬;성원모
    • Proceedings of the Korean Society of Soil and Groundwater Environment Conference
    • /
    • 1998.11a
    • /
    • pp.225-231
    • /
    • 1998
  • Open dump causes groundwater and soil contamination by leachate, air pollution by LFG (Landfill Gas). In this paper, in order to improve landfill researches which have been done about reduction of high leachate level and LFG collection in the Kimpo landfill separately, the effect of simultaneous flowing of leachate and LFG has been Studied. The HYLGS (Hanyang Leachate Gas Simulator) used in this study is a 3D, 2-phase, transient FDM model which can be applied to venting trenches in a landfill. From present numerical analysis it can be concluded that all the pressures of the Kimpo landfill grid system are almost the same and their maximum value in the center grid block of the system is approximately 26 m $H_2O$ (2.52 atm), that because the pressures of venting trench layer situated in the middle of the landfill have the lowest values and equal with air pressure, the venting trenches play an important role in landfill stabilization, that the flow of gas will be more difficult as time goes by owing to the increase of LGR(Leachate and gas ratio).

  • PDF

Stabilization of Industrial Wastes Landfill using Lab-lysimeter (모형매립조를 이용한 산업폐기물 매립지의 안정화 조사 기초 연구)

  • 박동일;최석규;홍종순;장인용
    • Journal of environmental and Sanitary engineering
    • /
    • v.13 no.3
    • /
    • pp.9-18
    • /
    • 1998
  • An experimental research was conducted to establish primary data for the stabilization assessment of industrial wastes landfill with analysis of waste components and investigation of leachate and gas generation, using three sets of lysimeter as experimental apparatus. Comparing results of lysimeter from data of landfill, it is suggested that lysimeter of this study can be used to accomplish the stabilization assessment of the real landfill site. Moisture content was lower as landfill period was older and combustible component was the highest in lysimeter C. The C/N ratio of waste was 7.4~14.4 and, with the elemental analysis, the theoretical gas generation rate based on the modified Buswell equation was 0.47~0.49 $m^3/kg-dry$ waste in lysimeter C. Considering the C/N ratio of leachate, it is concluded that the addition of carbon source is needed to biodegrade leachate hereafter. Gas generation rate($m^3/kg-dry$ waste) from lysimeter A, B and C was 0.0009, 0.014 and 0.0067, respectively, and different from each other according to the landfill period of wastes. The results in this study show that the biodegradation of microorganism for stabilization of landfill was inhibited and more activated in acidogenic step than in methanogenic of anaerobic degradation.

  • PDF

A Study on the Mass Balance Analysis of Non-Degradable Substances for Bioreactor Landfill

  • Chun, Seung-Kyu
    • Environmental Engineering Research
    • /
    • v.17 no.4
    • /
    • pp.191-196
    • /
    • 2012
  • Analysis of hydrological safety as well as the determination of many substance concentrations are necessary when bioreactor systems are introduced to landfill operations. Therefore, hydrological and substance balance model was developed since it can be applied to various bioreactor landfill operation systems. For the final evaluation of the model's effectiveness, four different methods of injections (leachate alone, leachate and organic waste water, leachate and reverse osmosis concentrate, and all the above three combination) was applied to 1st landfill site of Sudokwon landfill. As a result, the water content of the hypothetical cases for four different systematic bioreactors is projected to be increased up to 35.5% in next 10 years, and this indicated that there will be no problems in meeting the hydrological safety. Also, the final $Cl^-$ concentration after 10-yr time period was projected to be between from minimum 126 to maximum 3,238 mg/L, which could be still a decrease from the original value of 3,278 mg/L. According to the proposed model, whether the substance concentration becomes increased or decreased largely depends on the ratio of initial quantity of inner landfill leachate and the rate of injection.