• Title/Summary/Keyword: Land-cover

Search Result 1,411, Processing Time 0.026 seconds

Integration of Multi-spectral Remote Sensing Images and GIS Thematic Data for Supervised Land Cover Classification

  • Jang Dong-Ho;Chung Chang-Jo F
    • Korean Journal of Remote Sensing
    • /
    • v.20 no.5
    • /
    • pp.315-327
    • /
    • 2004
  • Nowadays, interests in land cover classification using not only multi-sensor images but also thematic GIS information are increasing. Often, although useful GIS information for the classification is available, the traditional MLE (maximum likelihood estimation techniques) does not allow us to use the information, due to the fact that it cannot handle the GIS data properly. This paper propose two extended MLE algorithms that can integrate both remote sensing images and GIS thematic data for land-cover classification. They include modified MLE and Bayesian predictive likelihood estimation technique (BPLE) techniques that can handle both categorical GIS thematic data and remote sensing images in an integrated manner. The proposed algorithms were evaluated through supervised land-cover classification with Landsat ETM+ images and an existing land-use map in the Gongju area, Korea. As a result, the proposed method showed considerable improvements in classification accuracy, when compared with other multi-spectral classification techniques. The integration of remote sensing images and the land-use map showed that overall accuracy indicated an improvement in classification accuracy of 10.8% when using MLE, and 9.6% for the BPLE. The case study also showed that the proposed algorithms enable the extraction of the area with land-cover change. In conclusion, land cover classification results produced through the integration of various GIS spatial data and multi-spectral images, will be useful to involve complementary data to make more accurate decisions.

OBJECT-ORIENTED CLASSIFICATION AND APPLICATIONS IN THE LUCC

  • Yang, Guijun
    • Proceedings of the KSRS Conference
    • /
    • 2003.11a
    • /
    • pp.1221-1223
    • /
    • 2003
  • With speediness of economy, the structure of land use has taken lots of change. How can we quickly and exactly obtain detailed land use/cover change information, and then we know land resource amount, quality, distributing and change direction. More and more high resolution satellite systems are under development. So we can make good use of RS data, existed GIS data and GPS data to extract change information and update map. In this paper a fully automated approach for detecting land use/cover change using remote sensing data with object-oriented classification based on GIS data, GPS data is presented (referring to Fig.1). At same time, I realize integrating raster with vector methods of updating the basic land use/land cover map based on 3S technology and this is becoming one of the most important developing direction in 3S application fields; land-use and cover change fields over the world. It has been successful applied in two tasks of The Ministry of Land and Resources P.R.C and taken some of benefit.

  • PDF

Improvement of the Level-2 Land Cover Map with Satellite Image (위성영상을 이용한 중분류 토지피복도의 제작과정 개선)

  • Park, Jung-Jae;Ku, Cha-Yong;Kim, Byung-Sun
    • Spatial Information Research
    • /
    • v.15 no.1
    • /
    • pp.67-80
    • /
    • 2007
  • The land cover map represent the state of earth surfaces. It can be used as basic data to explore present conditions of earth surfaces and develop future plans for local areas. To produce the land cover map with efficiency, gathering geographic information from satellite images is important. Exporting, building, and managing processes on the land cover information are needed as well. In this study we aim to review the producing process of the level-2 land cover map in detail and enhance it. h present status of the producing process of the land cover map in Korea is reviewed, problems of the process are explored, and measures for improving it are proposed. The criteria for fixing boundaries and providing attributes for the land cover map are proposed. This proposed criteria may solve problems in a present producing process. The improving measures proposed in this study should be continuously revised in future studies.

  • PDF

Land Cover Classification over East Asian Region Using Recent MODIS NDVI Data (2006-2008) (최근 MODIS 식생지수 자료(2006-2008)를 이용한 동아시아 지역 지면피복 분류)

  • Kang, Jeon-Ho;Suh, Myoung-Seok;Kwak, Chong-Heum
    • Atmosphere
    • /
    • v.20 no.4
    • /
    • pp.415-426
    • /
    • 2010
  • A Land cover map over East Asian region (Kongju national university Land Cover map: KLC) is classified by using support vector machine (SVM) and evaluated with ground truth data. The basic input data are the recent three years (2006-2008) of MODIS (MODerate Imaging Spectriradiometer) NDVI (normalized difference vegetation index) data. The spatial resolution and temporal frequency of MODIS NDVI are 1km and 16 days, respectively. To minimize the number of cloud contaminated pixels in the MODIS NDVI data, the maximum value composite is applied to the 16 days data. And correction of cloud contaminated pixels based on the spatiotemporal continuity assumption are applied to the monthly NDVI data. To reduce the dataset and improve the classification quality, 9 phenological data, such as, NDVI maximum, amplitude, average, and others, derived from the corrected monthly NDVI data. The 3 types of land cover maps (International Geosphere Biosphere Programme: IGBP, University of Maryland: UMd, and MODIS) were used to build up a "quasi" ground truth data set, which were composed of pixels where the three land cover maps classified as the same land cover type. The classification results show that the fractions of broadleaf trees and grasslands are greater, but those of the croplands and needleleaf trees are smaller compared to those of the IGBP or UMd. The validation results using in-situ observation database show that the percentages of pixels in agreement with the observations are 80%, 77%, 63%, 57% in MODIS, KLC, IGBP, UMd land cover data, respectively. The significant differences in land cover types among the MODIS, IGBP, UMd and KLC are mainly occurred at the southern China and Manchuria, where most of pixels are contaminated by cloud and snow during summer and winter, respectively. It shows that the quality of raw data is one of the most important factors in land cover classification.

A Study on Changes in Local Meteorological Fields due to a Change in Land Use in the Lake Shihwa Region Using Synthetic Land Cover Data and High-Resolution Mesoscale Model (합성토지피복자료와 고해상도 중규모 모형을 이용한 시화호 지역의 토지이용 변화에 따른 주변 기상장 변화 연구)

  • Park, Seon Ki;Kim, Jee-Hee
    • Atmosphere
    • /
    • v.21 no.4
    • /
    • pp.405-414
    • /
    • 2011
  • In this study, the influence of a change in land use on the local weather fields is investigated around the Lake Shihwa area using synthetic land cover data and a high-resolution mesoscale model - the Weather Research and Forecasting (WRF). The default land cover data generally used in the WRF is based on the land use category of the United States Geological Survey (USGS), which erroneously presents most land areas of the Korean Peninsula as savannas. To revise such a fault, a multi-temporal land cover data, provided by the Ministry of Environment of Korea, was employed to generate a land cover map of 2005 subject to the land use in Korea at that time. A new land cover map of 1989, before the construction of the Lake Shihwa, was made based on the 2005 map and the Landsat 4-5 TM satellite images of two years. Over the areas where the land use had been changed (e.g., from sea to wetlands, towns, etc.) due to the Lake Shihwa development project, the skin temperature decreased by up to $8^{\circ}C$ in the winter case while increased by as much as $14^{\circ}C$ in the summer case. Changes in the water vapor mixing ratio were mostly affected by advection and topography in both seasons, with considerable increase in the summer case due to continuous sea breeze. Local decrease in water vapor occurred over high land use change areas and/or over downstream of such areas where alteration in wind fields were induced by changes in skin temperature and surface roughness at the areas of land use changes. The albedo increased by about 0.1% in the regions where sea was converted into wetland. In the regions where urban areas were developed, such as Songdo New Town and Incheon International Airport, the albedo increased by up to 0.16%.

Characteristics of MODIS land-cover data sets over Northeast Asia for the recent 12 years(2001-2012) (동북아시아 지역에서의 최근 12년간 (2001-2012) MODIS 토지피복 분류 자료의 특성)

  • Park, Ji-Yeol;Suh, Myoung-Seok
    • Korean Journal of Remote Sensing
    • /
    • v.30 no.4
    • /
    • pp.511-524
    • /
    • 2014
  • In this study, we investigated the statistical occupations and interannual variations of land cover types over Northeast Asian region using the 12 years (2001-2012) MODerate Resolution Imaging Spectroradiometer(MODIS) land cover data sets. The spatial resolution and land cover types of MODIS land cover data sets are 500 m and 17, respectively. The 12-year average shows that more than 80% of the analysis region is covered by only 3 types of land cover, cropland (36.96%), grasslands (23.14%) and mixed forests (22.97%). Whereas, only minor portion is covered by cropland/natural vegetation mosaics (6.09%), deciduous broadleaf forests (4.26%), urban and built-up (2.46%) and savannas (1.54%). Although sampling period is small, the regression analysis showed that the occupations of evergreen needleleaf forests, deciduous broadleaf forests and mixed forests are increasing but the occupations of woody savannas and savannas are decreasing. In general, the pixels where the land cover types are classified differently with year are amount to more than 10%. And the interannual variations in the occupations of land cover types are most prominent in cropland (1.41%), mixed forests (0.82%) and grasslands (0.73%). In addition, the percentage of pixels classified as 1 type for 12 years is only 57% and the other pixels are classified as more than 2 types, even 9 types. The annual changes in the classification of land cover types are mainly occurred at the almost entire region, except for the eastern and northwestern parts of China, where the single type of land cover located. When we take into consider the time scale needed for the land cover changes, the results indicate that the MODIS land cover data sets over the Northeast Asian region should be used with caution.

HYDROLOGIC IMPACT ASSESSMENT OF LAND COVER CHANGES BY 2002 TYPHOON RUSA USING LANDSAT IMAGES AND STORM RUNOFF MODEL

  • Lee, Mi-Seon;Park, Geun-Ae;Kim, Seong-Joon
    • Proceedings of the KSRS Conference
    • /
    • v.2
    • /
    • pp.539-542
    • /
    • 2006
  • To investigate the streamflow impact of land cover changes by a typhoon, WMS HEC-1 storm runoff model was applied by using land cover information before and after the typhoon. The model was calibrated with three storm events of 1985 to 1988 based on 1985 land cover condition for a 192.7 $km^2$ watershed in northeast coast of South Korea. After the model was tested, it was run to estimate impacts of land cover change by the typhoon RUSA occurred in 2002 (31 August - 1 September) with 897.5 mm rainfall. The land covers before and after the typhoon were prepared using Landsat 7 ETM+ of September 11 of 2000 and Landsat 5 TM of September 29 of 2002 respectively. For the 6.9 $km^2$ damaged area (3.6 % of the watershed), the peak runoff and total runoff by the changed land cover condition increased 12.5 % and 12.7 % for 50 years rainfall frequency and 1.4 % and 1.8 % for 500 years rainfall frequency respectively based on AMC (Antecedent Moisture Condition)-I condition.

  • PDF

AN ASSESSMENT OF LAND COVER CHANGES AND ASSOCIATED URBANIZATION IMPACTS ON AIR QUALITY IN NAWABSHAH, PAKISTAN: A REMOTE SENSING PERSPECTIVE

  • Shaikh, Asif Ahmed;Gotoh, Keinosuke
    • Proceedings of the KSRS Conference
    • /
    • v.2
    • /
    • pp.555-558
    • /
    • 2006
  • In recent years, urban development has expanded rapidly in Nawabshah City of Pakistan. A major effect associated with this population trend is transformation of the landscape from natural cover types to increasingly impervious urban land. The core objective of this study are to provide time-series information to define and measure the urban land cover changes of Nawabshah, Pakistan between the years 1992 and 2002, and to examine related urbanization impacts on air quality of the study area. Two multi-temporal Landsat images acquired in 1992 and 2002 together with standard topographical maps to measure land cover changes were used in this study. The image processing and data manipulation were conducted using algorithms supplied with the ERDAS Imagine software. An unsupervised classification approach, which uses a minimum spectral distance to assign pixels to clusters, was used with the overall accuracy ranging from 84 percent to 92 percent. Land cover statistics demonstrate that during the study period (1992-2002) extensive transformation of barren and vegetated lands into urban land have taken place in Nawabshah City. Results revealed that land cover changes due to urbanization has not only contaminated the air quality of the study area but also raised the health concerns for the local residents.

  • PDF

Hydrologic Impact Assessment of land Cover Changes by 2002 Typhoon RUSA Using Landsat Images and Storm Runoff Model

  • Lee, Mi-Seon;Park, Geun-Ae;Kim, Seong-Joon
    • Korean Journal of Remote Sensing
    • /
    • v.22 no.5
    • /
    • pp.407-413
    • /
    • 2006
  • To investigate the streamflow impact of land cover changes by a typhoon, HEC-l storm runoff model was applied by using land cover information before and after the typhoon. The model was calibrated with three storm events of 1985 to 1988 based on 1985 land cover condition for a $192.7km^{2}$ watershed in northeast coast of South Korea. After the model was tested, it was run to estimate impacts of land cover change by the typhoon RUSA occurred in 2002 (31 August-1 September) with 897.5 mm rainfall. The land covers before and after the typhoon were prepared using Landsat 7 ETM+ of September 11 of 2000 and Landsat 5 TM of September 29 of 2002 respectively. For the $6.9km^{2}$ damaged area (3.6 % of the watershed), the peak runoff and total runoff by the changed land cover condition increased 12.5 % and 12.7 % for 50 years rainfall frequency and 1.4 % and 1.8 % for 500 years rainfall frequency respectively based on AMC (Antecedent Moisture Condition)-I condition.

A Probability Mapping for Land Cover Change Prediction using CLUE Model (토지피복변화 예측을 위한 CLUE 모델의 확률지도 생성)

  • Oh, Yun-Gyeong;Choi, Jin-Yong;Bae, Seung-Jong;Yoo, Seung-Hwan;Lee, Sang-Hyun
    • Journal of Korean Society of Rural Planning
    • /
    • v.16 no.2
    • /
    • pp.47-55
    • /
    • 2010
  • Land cover and land use change data are important in many studies including climate change and hydrological studies. Although the various theories and models have been developed, it is difficult to identify the driving factors of the land use change because land use change is related to policy options and natural and socio-economic conditions. This study is to attempt to simulate the land cover change using the CLUE model based on a statistical analysis of land-use change. CLUE model has dynamic modeling tools from the competition among land use change in between driving force and land use, so that this model depends on statistical relations between land use change and driving factors. In this study, Yongin, Icheon and Anseong were selected for the study areas, and binary logistic regression and factor analysis were performed verifying with ROC curve. Land cover probability map was also prepared to compare with the land cover data and higher probability areas are well matched with the present land cover demonstrating CLUE model applicability.