• Title/Summary/Keyword: Land use changes

Search Result 673, Processing Time 0.029 seconds

A Study on the Land-Use Changes on the Balan Water sheds Using the Multi-temperature Landsat TM Images (다시기 Landsat TM 영상을 이용한 소유역의 토지이용변화분석)

  • 강문성;박승우
    • Proceedings of the Korean Society of Agricultural Engineers Conference
    • /
    • 1999.10c
    • /
    • pp.473-478
    • /
    • 1999
  • The purpose of the study were to detect and evaluate the land use and changes on the Balan Watersheds, located southwest of Suwon, using the Thematic Mapper(TM) data. Three sests of TM taken in 1985 , 1993 and 1996 were used and the changes in the land use analyzed and compared. The suupervised and unsuperivised classification methods were adoppted to classify five land-cover categories ; Paddy , upland , forest , residential , and water. Future ladn use patterns were simulated using a Markow chain method, and the change ratios presented.

  • PDF

Assessment of streamflow variation considering long-term land-use change in a watershed

  • Noh, Joonwoo;Kim, Yeonsu;Yu, Wansik;Yu, Jisoo
    • Korean Journal of Agricultural Science
    • /
    • v.48 no.3
    • /
    • pp.629-642
    • /
    • 2021
  • Land-use change has an important role in the hydrologic characteristics of watersheds because it alters various hydrologic components such as interception, infiltration, and evapotranspiration. For example, rapid urbanization in a watershed reduces infiltration rates and increases peak flow which lead to changes in the hydrologic responses. In this study, a physical hydrologic model the soil and water assessment tool (SWAT) was used to assess long-term continuous daily streamflow corresponding to land-use changes that occurred in the Naesungchun river watershed. For a 30-year model simulation, 3 different land-use maps of the 1990s, 2000s, and 2010s were used to identify the impacts of the land-use changes. Using SWAT-CUP (calibration and uncertainty program), an automated parameter calibration tool, 23 parameters were selected, optimized and compared with the daily streamflow data observed at the upstream, midstream and downstream locations of the watershed. The statistical indexes used for the model calibration and validation show that the model performance is improved at the downstream location of the Naesungchun river. The simulated streamflow in the mainstream considering land-use change increases up to -2 - 30 cm compared with the results simulated with the single land-use map. However, the difference was not significant in the tributaries with or without the impact of land-use change.

An Analysis on the Structural Changes of Rural Land Use According to Urbanization (도시화에 따른 농촌토지이용구조변화 분석)

  • Hwang, Han-Cheol;Go, Young-Bae
    • Journal of Korean Society of Rural Planning
    • /
    • v.13 no.2
    • /
    • pp.85-92
    • /
    • 2007
  • This study aims to show how the urbanization of Korea has progressed for the last three decades, what its characteristics are, and how rural land use has changed by the national and district(cities and counties) level. The land use changes accompanying to the urbanization is analyzed through 3 indicators such as urbanization rate, the rate of cultivated and forest land and the rate of urbanized area. The statistical data are 30 years from 1976 to 2005 for time series analysis by the national level, and are for the two years of 1995 and 2005 by the district level. The relationship between urbanization and land use changes in the national level is analyzed using statistical analysis(Correlation Analysis). In order to analyze the dynamic and spatial urbanization and land use changes effectively in the district level, Z-score, Paired T-test, Correlation Analysis, Analysis of Variance and Chi-squire Test are used. The results show negative correlation between urbanization rate and the rate of cultivated and forest land, and positive correlation between urbanization rate and the rate of urbanized area respectively. In the aspect of the change of urbanization rate, four categories are examined. In addition, four types are characterized on the basis of the rate of cultivated and forest land and the rate of urbanized area between 1995 from 2005.

Application of Change Detection Techniques Using KOMPSAT-1 EOC Images

  • Kim, Youn-Soo;Lee, Kwang-Jae
    • Korean Journal of Remote Sensing
    • /
    • v.19 no.3
    • /
    • pp.263-269
    • /
    • 2003
  • This research examined the capabilities of KOMPSAT-1 EOC images for the application of urban environment, including the urban changes of the study areas. This research is constructed in three stages: Firstly, for the application of change detection techniques, which utilizes multi-temporal remotely sensed data, the data normalization process is carried out. Secondly, the change detection method is applied for the systematic monitoring of land-use changes. Lastly, using the results of the previous stages, the land-use map is updated. Consequently, the patterns of land-use changes are monitored by the proposed scheme. In this research, using the multi-temporal KOMPSAT-1 EOC images and land-use maps, monitoring of urban growth was carried out with the application of land-use changes, and the potential and scope of the application of the EOC images were also examined.

Estimation of Crop Water Requirement Changes Due to Future Land Use and Climate Changes in Lake Ganwol Watershed (간월호 유역의 토지이용 및 기후변화에 따른 논밭 필요수량 변화 추정)

  • Kim, Sinaee;Kim, Seokhyeon;Hwang, Soonho;Jun, Sang-Min;Song, Jung-Hun;Kang, Moon-Seong
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.63 no.6
    • /
    • pp.61-75
    • /
    • 2021
  • This study aims to assess the changes in crop water requirement of paddy and upland according to future climate and land use changes scenarios. Changes in the spatiotemporal distribution of temperature and precipitation are factors that lower the stability of agricultural water supply, and predicting the changes in crop water requirement in consideration of climate change can prevent the waste of limited water resources. Meanwhile, due to the recent changes in the agricultural product consumption structure, the area of paddy and upland has been changing, and it is necessary to consider future land use changes in establishing an appropriate water use plan. Climate change scenarios were derived from the four GCMs of the CMIP6, and climate data were extracted under two future scenarios, namely SSP1-2.6 and SSP5-8.5. Future land use changes were predicted using the FLUS (Future Land Use Simulation) model. Crop water requirement in paddy was calculated as the sum of evapotranspiration and infiltration based on the water balance in a paddy field, and crop water requirement in upland was estimated as the evapotranspiration value by applying Penman-Monteith method. It was found that the crop water requirement for both paddy and upland increased as we go to the far future, and the degree of increase and variability by time showed different results for each GCM. The results derived from this study can be used as basic data to develop sustainable water resource management techniques considering future watershed environmental changes.

Forecast of Land use Change for Efficient Development of Urban-Agricultural city (도농도시의 효율적 개발을 위한 토지이용변화예측)

  • Kim, Se-Kun;Han, Seung-Hee
    • Journal of Korean Society for Geospatial Information Science
    • /
    • v.20 no.2
    • /
    • pp.73-79
    • /
    • 2012
  • This study attempts to analyze changes in land use patterns in a compound urban and agricultural city Kimje-si, using LANDSAT TM imagery and to forecast future changes accordingly. As a new approach to supervised classification, HSB(Hue, Saturation, Brightness)-transformed images were used to select training zones, and in doing so classification accuracy increased by more than 5 percent. Land use changes were forecasted by using a cellular automaton algorithm developed by applying Markov Chain techniques, and by taking into account classification results and GIS data, such as population of the pertinent region by area, DEMs, road networks, water systems. Upon comparing the results of the forecast of the land use changes, it appears that geographical features had the greatest influence on the changes. Moreover, a forecast of post-2030 land use change patterns demonstrates that 21.67 percent of mountain lands in Kimje-si is likely to be farmland, and 13.11 percent is likely to become city areas. The major changes are likely to occur in small mountain lands located in the heart of the city. Based on the study result, it seems certain that forecasting future land use changes can help plan land use in a compound urban and agricultural city to procure food resources.

Subway Network Expansion and Spatial Restructuring of Accessibility in Seoul

  • Lee, Keum-Sook
    • Journal of the Korean Regional Science Association
    • /
    • v.11 no.2
    • /
    • pp.53-63
    • /
    • 1995
  • Changes in transport are reflected in the accessibility of a place, which is denoted as the inherent advantageous characteristics of a place with respect to overcoming spatial friction, and affect the land use ultimately. A composite accessibility measurement scheme is developed and applied to the subway network in Seoul, which has been constructed in 1972. Changes in the transport network are reflected in the spatial structure of accessibility and affect ultimately the land use pattern. Therefore, it is of relevance to examine the changes in the spatial structure of accessibility, which allows to forecast the direction of changes in the land use pattern.

  • PDF

Streamflow sensitivity to land cover changes: Akaki River, Ethiopia

  • Mitiku, Dereje Birhanu;Kim, Hyeon Jun;Jang, Cheol Hee;Park, Sanghyun;Choi, Shin Woo
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2016.05a
    • /
    • pp.49-49
    • /
    • 2016
  • The impact of land cover changes on streamflow of the Akaki catchment will be assessed using Soil and Water Assessment Tool (SWAT) model. The study will analyze the historical land cover changes (1993 to 2016) that have taken place in the catchment and its effect on the streamflow of the study area. Arc GIS will be used to analysis the satellite images obtained from the United States Geological Survey (USGS). To investigate the impact of land cover change on streamflow the model set up will be done using readily available spatial and temporal data, and calibrated against measured discharge. Two third of the data will be used for model calibration (1993?2000) and the remaining one-third for model validation (2001?2004). Model performance will be evaluated by using Nash and Sutcliff efficiency (NS) and coefficient of determination (R2). The calibrated model will be used to assess two land cover change (2002 and 2016) scenarios and its likely impacts of land use changes on the runoff will be quantified. The evaluation of the model response to these changes on streamflow will be presented properly. The study will contribute a lot to understand land use and land cover change on streamflow. This enhances the ability of stakeholder to implement sound policies to minimize undesirable future impacts and management alternatives which have a significant role in future flood control of the study area.

  • PDF

Prediction of Land-cover Change Based on Climate Change Scenarios and Regional Characteristics using Cluster Analysis (기후변화 시나리오에 따른 미래 토지피복변화 예측 및 군집분석을 이용한 지역 특성 분석)

  • Oh, Yun-Gyeong;Choi, Jin-Yong;Yoo, Seung-Hwan;Lee, Sang-Hyun
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.53 no.6
    • /
    • pp.31-41
    • /
    • 2011
  • This study was conducted to predict future land-cover changes under climate change scenarios and to cluster analysis of regional land-cover characteristics. To simulate the future land-cover according to climate change scenarios - A1B, A2, and B1 of the Special Report on Emissions Scenarios (SRES), Dyna-CLUE (Conversion of Land Use Change and its Effects) was applied for modeling of competition among land-use types in relation with socioeconomic and biophysical driving factors. Gyeonggi-do were selected as study areas. The simulation results from 2010 to 2040 suggested future land-cover changes under the scenario conditions. All scenarios resulted in a gradual decrease in paddy area, while upland area continuously increased. A1B scenario showed the highest increase in built-up area, but all scenarios showed only slight changes in forest area. As a result of cluster analysis with the land-cover component scores, 31 si/gun in Gyeonggi-do were classified into three clusters. This approach is expected to be useful for evaluating and simulating land-use changes in relation to development constraints and scenarios. The results could be used as fundamental basis for providing policy direction by considering regional land-cover characteristics.

Analysis of River Channel Morphology and Riparian Land Use Changes Using Aerial Photographs and GIS

  • Park Geun Ae;Lee Mi Seon;Kim Hyeon Jun;Kim Seong Joon
    • Proceedings of the KSRS Conference
    • /
    • 2004.10a
    • /
    • pp.566-569
    • /
    • 2004
  • This study is to trace the change of stream shape using the past series of aerial photographs, and to compare the land use changes of riparian area along the stream. For the Gyeongan national stream, aerial photographs of 1966, 1981 and 2000 were selected and ortho photographs were made with interior orientation and exterior orientation, respectively. As apparent changes of the stream, the consolidated reaches of stream with levee construction were straightened and their stream widths were widened. Especially the stream width of inlet part of Paldang lake was widened almost twice because of the rise of water level by dam construction in 1974. The land use maps (1966, 1981,2000) of riparian areas were also made, respectively and classified into 6 categories (water, forest, agricultural land, urban area, road, sandbar) by digitizing. The area of forest and agricultural land decreased and urban area increased as the stream maintenance was performed.

  • PDF