• 제목/요약/키워드: Land cover

검색결과 1,416건 처리시간 0.027초

Impacts of Land Surface Boundary Conditions on the Short-range weather Forecast of UM During Summer Season Over East-Asia (지면경계조건이 UM을 이용한 동아시아 여름철 단기예보에 미치는 영향)

  • Kang, Jeon-Ho;Suh, Myoung-Seok
    • Atmosphere
    • /
    • 제21권4호
    • /
    • pp.415-427
    • /
    • 2011
  • In this study, the impacts of land surface conditions, land cover (LC) map and leaf area index (LAI), on the short-range weather forecast over the East-Asian region were examined using Unified Model (UM) coupled with the MOSES 2.2 (Met-Office Surface Exchange Scheme). Four types of experiments were performed at 12-km horizontal resolution with 38 vertical layers for two months, July and August 2009 through consecutive reruns of 72-hour every 12 hours, 00 and 12 UTC. The control experiment (CTRL) uses the original IGBP (International Geosphere-Biosphere Programme) LC map and old MODIS (MODerate resolution Imaging Spectroradiometer) LAI, the new LAI experiment (NLAI) uses improved monthly MODIS LAI. The new LC experiment (NLCE) uses KLC_v2 (Kongju National Univ. land cover), and the new land surface experiment (NLSE) uses KLC_v2 and new LAI. The reduced albedo and increased roughness length over southern part of China caused by the increased broadleaf fraction resulted in increase of land surface temperature (LST), air temperature, and sensible heat flux (SHF). Whereas, the LST and SHF over south-eastern part of Russia is decreased by the decreased needleleaf fraction and increased albedo. The changed wind speed induced by the LC and LAI changes also contribute the LST distribution through the change of vertical mixing and advection. The improvement of LC and LAI data clearly reduced the systematic underestimation of air temperature over South Korea. Whereas, the impacts of LC and LAI conditions on the simulation skills of precipitation are not systematic. In general, the impacts of LC changes on the short range forecast are more significant than that of LAI changes.

The Effects of Flow and Land Use Types on Seasonal Variations of Water Quality in Streams (하천 수질의 계절적 변화에 미치는 유량과 토지이용의 영향)

  • Han, Mideok;Park, Shinjuong;Choi, Seungseok;Kim, Jongchan;Lee, Changhee;Namkung, Eun;Chung, Wookjin
    • Journal of Korean Society on Water Environment
    • /
    • 제25권4호
    • /
    • pp.539-546
    • /
    • 2009
  • We examined the effects of land cover types on water quality based on data surveyed during April 2007-February 2008 from 178 sites of 111 streams in Paldang watershed. BOD, COD, DO, SS, T-N, and T-P concentrations of spring and summer were strongly and significantly associated with the first principal component of the proportions of eight land cover types, and differences between all parameter's concentration except SS and T-N of spring and summer were insignificantly related with them. SS and T-N concentration of summer were significantly correlated with increase and decrease of stream flow. T-P concentration of spring was the most significantly related with the second principal component which was positively correlated with the proportions of residential and forest land covers and was negatively correlated with the proportions of paddy and grass land covers. It is necessary to manage land use of the upper watershed and stream flow for improvement in water quality because seasonal variations of each water quality parameter are dependent upon land cover and flow variations.

Intra-event variability of bacterial composition in stormwater runoff from mixed land use and land cover catchment

  • Paule-Mercado, Ma. Cristina A.;Salim, Imran;Lee, Bum-Yeon;Lee, Chang-Hee;Jahng, Deokjin
    • Membrane and Water Treatment
    • /
    • 제10권1호
    • /
    • pp.29-38
    • /
    • 2019
  • Microbial community and composition in stormwater runoff from mixed land use land cover (LULC) catchment with ongoing land development was diverse across the hydrological stage due different environmental parameters (hydrometeorological and physicochemical) and source of runoff. However, limited studies have been made for bacterial composition in this catchment. Therefore, this study aims to: (1) quantify the concentration of fecal indicator bacteria (FIB), stormwater quality and bacterial composition and structure according to hydrological stage; and (2) determine their correlation to environmental parameters. The 454 pyrosequencing was used to determine the bacterial community and composition; while Pearson's correlation was used to determine the correlation among parameters-FIB, stormwater quality, bacterial composition and structure-to environmental parameters. Results demonstrated that the initial and peak runoff has the highest concentration of FIB, stormwater quality and bacterial composition and structure. Proteobacteria, Bacteroidetes, Actinobacteria and Firmicutes were dominant bacteria identified in this catchment. Furthermore, the 20 most abundant genera were correlated with runoff duration, average rainfall intensity, runoff volume, runoff flow, temperature, pH, organic matter, nutrients, TSS and turbidity. An increase of FIB and stormwater quality concentration, diversity and richness of bacterial composition and structure in this study was possibly due to leakage from septic tanks, cesspools and latrines; feces of domestic and wild animals; and runoff from forest, destroyed septic system in land development site and urban LULC. Overall, this study will provide an evidence of hydrological stage impacts on the runoff microbiome environment and public health perspective.

Evidential Fusion of Multsensor Multichannel Imagery

  • Lee Sang-Hoon
    • Korean Journal of Remote Sensing
    • /
    • 제22권1호
    • /
    • pp.75-85
    • /
    • 2006
  • This paper has dealt with a data fusion for the problem of land-cover classification using multisensor imagery. Dempster-Shafer evidence theory has been employed to combine the information extracted from the multiple data of same site. The Dempster-Shafer's approach has two important advantages for remote sensing application: one is that it enables to consider a compound class which consists of several land-cover types and the other is that the incompleteness of each sensor data due to cloud-cover can be modeled for the fusion process. The image classification based on the Dempster-Shafer theory usually assumes that each sensor is represented by a single channel. The evidential approach to image classification, which utilizes a mass function obtained under the assumption of class-independent beta distribution, has been discussed for the multiple sets of mutichannel data acquired from different sensors. The proposed method has applied to the KOMPSAT-1 EOC panchromatic imagery and LANDSAT ETM+ data, which were acquired over Yongin/Nuengpyung area of Korean peninsula. The experiment has shown that it is greatly effective on the applications in which it is hard to find homogeneous regions represented by a single land-cover type in training process.

Analysis of Land Cover Change of Coastal Sand Dunes in Yangyang Using Aerial Photographs (항공사진을 활용한 양양 해안사구 지역의 토지피복 변천 분석)

  • Han, Gab-Soo;Kim, Kyeong-Nam
    • Journal of the Korean Association of Geographic Information Studies
    • /
    • 제13권2호
    • /
    • pp.107-118
    • /
    • 2010
  • The purpose of this study was to set the boundary of the coastal sand dunes and to analyze the change characteristics of land cover types using aerial photographs on Osan and Dongho coastal sand dunes in Yangyang. The boundaries of sand dunes were established using digital soil map, and land cover maps were made for each year using aerial photographs. As results of analysis, both beach and farmland areas have been decreased, since 1974 and forest area was relatively increased due to planting and forest growth. Facilities and bare land have been greatly increased since 1992. Loss of wetland, and beach due to these changes had an impact on the ecosystem destruction of sand dunes.

An Analysis on Spatio-Temporal Changes of Land Cover focusing on NDVI Using GIS and RS in Pyeongbuk Province, Northwest Korea (GIS와 RS를 이용한 토지피복 및 식생 분포의 시ㆍ공간적 변화 - 평안북도 서부 지역을 중심으로 -)

  • 이민부;김남신;최한성;신근하
    • Journal of the Korean Geographical Society
    • /
    • 제38권5호
    • /
    • pp.835-848
    • /
    • 2003
  • This study deals with the spatio-temporal change of land cover and vegetation distribution between 1988 and 2001 using remote sensing images and CIS techniques in west area of Pyeongbuk Province, northwest Korea. Landsat TM and ETM images are geometrically and radiometrically corrected for the analysis of land cover and NDVI. Forested areas are decreased during 13 year from 1988 to 2001 in study area including Sakju, Daegwan, Guseong and Euiju of Pyeongbuk Province, because wasteland are increased by human impact and denuded land by landslide and flooding. DEM analysis presents that settlement and cropland are developed toward higher and steeper mountain slope, together with decrease NDIV values. these changes have resulted from unplanned increase of cropland without consideration of geomorphic condition. Therefore, more researches and reasonable policies are required to protect forest and cropland and stable food supply against natural hazard like landslide.

Analysis of Land Cover Change Around Desert Areas of East Asia (식생 자료를 이용한 동아시아 사막 주변의 토지피복 변화 분석)

  • Ryu, Jae-Hyun;Han, Kyung-Soo;Pi, Kyoung-Jin;Lee, Min-Ji
    • Korean Journal of Remote Sensing
    • /
    • 제29권1호
    • /
    • pp.105-114
    • /
    • 2013
  • Desertification of the East Asia area induced by human's indiscriminate activities and natural causes has gradually expanded and demanded scientific research for monitoring and predicting land cover condition. Therefore, this research classified land types which were compared to MODIS land cover and analyzed the extent of barren zone effecting Korea through yellow dust using S10-DAY MVC NDVI from SPOT between 1999 and 2011. This study used unsupervised classification after processing NDVI Correction and Water Mask for eliminating noise values included in the data for enhancement of classification accuracy. The results of analysis are that there are active variations near the borders of desert, especially the Mongolian steppe and the Gobi Desert in central Asia. In addition, the extent of entire desert has been decreased in the middle of the last decade, although desertification is in going on in East Asia.

Landscape mosaic pattern analysis system using land cover map for micro-spatial analysis of regional planning (지역계획의 미시적 공간분석을 위한 토지피복도 경관 모자이크 패턴 분석 시스템)

  • Lee, Young-Chang;Lee, Kyoung-Mi;Chon, Jinhyung
    • Journal of Digital Contents Society
    • /
    • 제18권7호
    • /
    • pp.1367-1375
    • /
    • 2017
  • Recently, the use of land cover maps has been continuously increasing to analyze spatial patterns such as spatial compositions, functions and changes of landscape mosaics. In this paper, we propose a landscape analysis system that extracts patches, which is an element of landscape mosaics, in the land cover map using region-based image processing technique, and computes patch-based measures at patch level and class level. Also we propose a patch-based spatial pattern that can represent spatial relations using the computed measures. To validate the proposed system's effectiveness, we apply to Gwangju metropolitan city and analyze Gwangju's land use and spatial patterns.

Application of High Resolution Land Use Data on the Possibility to Mitigate Urban Thermal Environment (고해상도 지표자료를 이용한 도시 열환경 완화효과 가능성에 관한 연구)

  • Lee, Kwi-Ok;Lee, Hyun-Ju;Lee, Hwa-Woon
    • Journal of Environmental Science International
    • /
    • 제18권4호
    • /
    • pp.423-434
    • /
    • 2009
  • In recent years, the urban thermal environment has become worse, such as days on which the temperature goes above $30^{\circ}C$, sultry nights and heat stroke increase, due to the changes in terrestrial cover such as concrete and asphalt and increased anthropogenic heat emission accompanied by artificial structure. The land use type is an important determinant to near-surface air temperature. Due to these reasons we need to understand and improve the urban thermal environment. In this study, the fifth-generation Pennsylvania State University-National Center for Atmospheric Research Mesoscale Model(MMS) was applied to the metropolitan of Daegu area in order to investigate the influence of land cover changes and urban modifications increase of Albedo to the surface energy budget on the simulated near-surface air temperature and wind speed. The single urban category in existing 24-category U.S. Geological survey land cover classification used in MM5 was divided into 6 classes to account for heterogeneity of urban land cover. As a result of the numerical simulation intended for the metropolitan of Daegu assumed the increase of Albedo of roofs, buildings, or roads, the increase of Albedo (Cool scenario)can make decrease radiation effect of surface, so that it caused drops in ambient air temperature from 0.2 to 0.3 on the average during the daylight hours and smaller (or near-zero) decrease during the night. The Sensible heat flux and Wind velocity is decreased. Modeling studies suggest that increased surface albedo in urban area can reduce surface and air temperatures near the ground and affect related meteorological parameters such as winds, surface air temperature and sensible heat flux.

The Trend Analysis of Vegetation Change Applied to Unsupervised Classification Over East Asia: Using the NDVI 10-day data in 1999~2010 (무감독분류 기법을 이용한 동아시아지역의 식생변화 경향분석: 1999~2010 NDVI 10-day 자료를 바탕으로)

  • Kim, Sang-Il;Han, Kyung-Soo;Pi, Kyoung-Jin
    • Journal of Korean Society for Geospatial Information Science
    • /
    • 제19권4호
    • /
    • pp.153-159
    • /
    • 2011
  • Vegetative land cover is an important variable many Earth system process, general circulation and carbon exchange model requires vegetative cover as boundary layer necessary to run model. The purpose of this study is to detect and to understand land surface change. To monitor changes of East Asia vegetation, we used NDVI 10-day MVC data derived from SPOT VEGETATION during 12 years from 1999 to 2010. Finally, according to the land cover of classified class, we performed analysis for dynamic zone(positive change zone and negative change zone), static zone in 1999, 2010. Therefore, land covers corresponding to each class have appeared change by 2010. Land cover change was confirmed by analyzing data during 12 years which appeared vegetation change of surrounding the actual desert area to east.