• Title/Summary/Keyword: Lamp life

Search Result 238, Processing Time 0.03 seconds

Comparison to Automobile Pilot Lamp by Accelerated Life Test (가속수명시험을 통한 자동차용 파일럿램프의 비교평가)

  • Shin, Min-Gyung;Wei, Shin-Hwan;Kim, Hyung-Min
    • Journal of Applied Reliability
    • /
    • v.8 no.2
    • /
    • pp.75-85
    • /
    • 2008
  • In this paper, we compared domestic with foreign pilot lamps installed on the instrument board or electronic modules (car audio, air-conditional system, etc.) of an automotive vehicle by an accelerated life test in order to estimate the life of domestic pilot lamps. An accelerated life test method was developed and the relation of the life and voltage stress was analyzed. The main results are as follows; i) $B_{10}$ life of pilot lamp is above 5,000 hours, vehicle travel time for 10 years. ii) the life of domestic pilot lamp is longer than that of foreign thing. iii) the life distribution of domestic pilot lamp is wider than that of foreign thing. iv) it is possible to promote import replacement of automobile pilot lamp.

  • PDF

A study on the accommodation of common LED to shipboard (육상용 LED 램프의 선박 적응력에 관한 연구)

  • Jeong, Ji-Hyun;Park, Hwan-Chul;Kim, Yong-Joo;Seo, Sang-Do;Han, Seung-Jae;Kim, Min-Sok
    • Journal of the Korean Society of Fisheries and Ocean Technology
    • /
    • v.46 no.4
    • /
    • pp.503-508
    • /
    • 2010
  • Common LED (Light Emitting Diode) lamp has many advantages to compare with fluorescent lamp, long life and no pollution matter like the mercury. The LED lamp is a good light source especially for shipboard lighting because of its compact structure which prevents explosion and shock. Also, low maintenance cost is expected due to its longer life time in comparison with conventional lamps. The LED lamp, however, need some estimates that change of voltage and frequency, vibration, moisture on board to definite accommodation of the LED lamp to shipboard. The purpose of this study is to compare physical properties of a fluorescent lamp with one of the common LED lamp so as to analyze accommodation of common LED lamp on board. This study was carried out in two stages. First, temperature, humidity of illumination, voltage, electric current, frequency and electric power were measured by using experimental equipments. Second, a comparative analysis of consumption electric power, annual oil charge, annual CO2 emission and lamp life time, etc of the fluorescent lamp and common LED one was made. As a result of the study, the consumption electric power of fluorescent lamp was 50% higher than one of the common LED lamp. As a result of measuring life time, it was found that life time of common LED lamp was more about 3.5 fold than one of the fluorescent lamp. Considering these results, it's thought that common LED lamp is verified that energy saving is possible and using is possible as substitute for fluorescent lamp on board.

The Classification of EOLL (End of Lamp Life) on fluorescent lamp and Detection Method (형광 램프 수명 말기에 대한 구분과 검출 방법)

  • Cho, Gye-Hyun
    • Proceedings of the Korean Institute of IIIuminating and Electrical Installation Engineers Conference
    • /
    • 2007.11a
    • /
    • pp.9-10
    • /
    • 2007
  • This paper presents that what's the right EOLL(End of Lamp Life) phenomenon on fluorescent lamp and how to detect it according to the lamp status. In normal end of life situation for fluorescent lamps is emitter depletion of the cathodes. So, in most cases, the discharge will extinguish and the lamp will not start. But if the ballast is capable of sustaining the discharge, a new condition arise. Especially, the T4 and T5 lamp which has a short distance from cathode to socket of lamp future must have the EOLL Protection function.

  • PDF

A New End of Lamp Life Detection Method for Fluorescent Lamps (새로운 형광램프 수명말기 현상 검출 방법)

  • Cho, Gye-Hyun
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.21 no.7
    • /
    • pp.1-5
    • /
    • 2007
  • This paper presents the new detection method for the end of life on fluorescent lamps. At the end of lamp life, the lamp voltage and current asymmetrically increase and decrease more than normal state. If the ballast system does not have the protection function especially for T4 and T5 lamps, we may see the melting socket which is connected to the end of the lamp. To protect from this kind of abnormal status is the most important thing in the ballast system that has very old lamps.

Electronic Ballast for HPS Lamps with Intrinsic Power Regulation over Lamp Life

  • Dehghani, Majid;Saghaiannejad, Seid Mortaza;Karshenas, Hamid Reza
    • Journal of Power Electronics
    • /
    • v.9 no.4
    • /
    • pp.526-534
    • /
    • 2009
  • This paper introduces the electronic ballast for high pressure sodium (HPS) lamps which provides power regulation during the whole lamp life without using a closed-loop power control system, in spite of large variations of lamp characteristics resulting from lamp aging. The structure of the electronic ballast and the parameters of HPS lamps are described. A mathematical model for the ballast is developed and used for the design and analysis of the ballast. A design procedure is presented to design the ballast which provides intrinsic power regulation over the whole lamp life. To improve the technical specifications of the ballast, the practical and standard constraints are considered in the design. According to the design procedure, an electronic ballast for 250-W HPS lamps is designed. All theoretical analyses are verified with the help of a semi-industrial experimental setup. The results validate that the designed ballast provides power regulation during the whole lamp life.

Lifetime Estimation of an Automotive Halogen Lamp (자동차용 Halogen Lamp 의 수명 예측)

  • Kim, Chung-Sik;Shin, Seung-Jung;Kwack, Kae-Da
    • Proceedings of the KSME Conference
    • /
    • 2008.11a
    • /
    • pp.1259-1264
    • /
    • 2008
  • This paper presents an accelerated life test for burn out of tungsten filament of automotive halogen lamp. There are many failure modes and failure factors that associated with tungsten filament. But in this explain the dominant failure mode of tungsten filament is the bumout of the filament failure. At first, over voltage, high temperature, inrush current and vibration are selected as stress factors by using of two stage Quality Function Deploymeng(QFD). And we planed accelerated life test that has one factor(voltage) and three levels. By experiment it has absorbed that over voltage has an effect on the life of halogen lamp. Using ALTA programs, we estimated the common shpae parament of Weibull distribution, life-stress relationship and $B_{100p}$ life.

  • PDF

An Accelerated Life Test for Burnout of Tungsten Filament of Incandescent Lamp (텅스텐 백열전구의 필라멘트 단선에 대한 가속수명시험)

  • 이재국;김진우;신재철;김명수
    • Proceedings of the Korean Reliability Society Conference
    • /
    • 2004.07a
    • /
    • pp.129-137
    • /
    • 2004
  • This paper presents an accelerated life test for burnout of tungsten filament of incandescent lamp. From failure analyses of field samples, it is shown that their root causes are local heating or hot sports in the filament caused by tungsten evaporation and wire sag. Finite element analysis is performed to evaluate the effect of vibration and impact for burnout, but any points of stress concentration or structural weakness are not found in the sample. To estimate the burnout life of lamp, an accelerated life test is planned by using quality function deployment and fractional factorial design, where voltage, vibration, and temperature are selected as accelerating variables. We assumed that Weibull lifetime distribution and a generalized linear model of life-stress relationship hold through goodness of fit test and test for common shape parameter of the distribution. Using accelerated life testing software, we estimated the common shape parameter of Weibull distribution, life-stress relationship, and accelerating factor.

  • PDF

Comparative Study of the Preheating Methods to Extend the Life of the Fluorescent Lamp (형광등의 수명 연장을 위한 예열 방식의 비교 연구)

  • Han, Jae-Hyun;Jo, Gye-Huyn;Park, Chong-Yeun
    • Journal of Industrial Technology
    • /
    • v.23 no.A
    • /
    • pp.29-33
    • /
    • 2003
  • This paper proposed methods of filament preheating to extend a fluorescent lamp life. The ballast for the fluorescent lamp can be classified into two main groups magnetics and electronics. The electronic ballast is lighter and smaller than the magnetic ballast and it can dim up and down. There are two ways to start the fluorescent lamp in the electronic ballast: rapid start and instant start. Also there are two methods of the driving inverter self excited oscillation and force excited oscillation. The rapid starting is different from the instant starting in that the rapid start is preheating the filament before the steady state. If there is a preheating process before the lamp ignition, the life of the fluorescent lamp can be increased. This paper presented the preheating methods for self excited oscillating system and force excited oscillating system.

  • PDF

An Accelerated Life Test for Burnout of Tungsten Filament of Incandescent Lamp (텅스텐 백열전구의 필라멘트 단선에 대한 가속수명시험)

  • Kim Jin-Woo;Shin Jae-Chul;Kim Myung-Soo;Lee Jae-Kook
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.29 no.7 s.238
    • /
    • pp.921-929
    • /
    • 2005
  • This paper presents an accelerated life test for burnout of tungsten filament of incandescent lamp. From failure analyses of field samples, it is shown that their root causes are local heating or hot spots in the filament caused by tungsten evaporation and wire sag. Finite element analysis is performed to evaluate the effect of vibration and impact for burnout, but any points of stress concentration or structural weakness are not found in the sample. To estimate the burnout life of lamp, an accelerated life test is planned by using quality function deployment and fractional factorial design, where voltage, vibration, and temperature are selected as accelerating variables. We assumed that Weibull lifetime distribution and a generalized linear model of life-stress relationship hold through goodness of fit test and test for common shape parameter of the distribution. Using accelerated life testing software, we estimated the common shape parameter of Weibull distribution, life-stress relationship, and accelerating factor.

A Study on Geosmin Removal of Algae Byproducts by Ozonation and Photocatalysis (오존과 광촉매를 이용한 조류 부산물중 Geosmin 제거에 관한 연구)

  • 김은호;성낙창;최용락
    • Journal of Life Science
    • /
    • v.9 no.5
    • /
    • pp.581-589
    • /
    • 1999
  • This study was carried out to compare ozonation with photocatalysis degradation for removal Geosmin of algae byproduct. The change of pH was decresed from 7.02 to 2.8 after contact time 480 minute for ozonation. In case of UV-germicidal lamp, pH was very quickly increased from 7.02 to 7.5, but Halogen lamp did very slowly change pH. Geosmin degradation ratio was as following, UV-germicidal lamp/TiO2(100mg/L) O3>UV-germicidal lamp/TiO2(50mg/L)>UV-germicidal lamp(10W)>halogen lamp(50W). Instead of TiO2 suspension solution, Geosmin degradation ratio was very low using hollow bead and pellet as coated TiO2. As a result of identifing byproducts, ozonation generated three species of aldehyde such as 3-Heptanone and three species of alcohol such as Heptanal, but photocatalysis formed 1, 14-Tetradecanediol infinitesimally.

  • PDF