• Title/Summary/Keyword: Laminating method

Search Result 64, Processing Time 0.029 seconds

Measurement of minimum line width of an object fabricated by metal 3D printer using powder bed fusion type with stainless steal powder (스테인리스강을 사용한 분말 적층 용융 방식의 금속 3차원 프린터에서 제작된 물체의 최소 선폭 측정)

  • Son, BongKuk;Jeong, Youn Hong;Jo, Jae Heung
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.19 no.10
    • /
    • pp.346-351
    • /
    • 2018
  • Metal three-dimensional (3D) printing technologies are mainly classified as powder bed fusion (PBF) and direct energy deposition (DED) methods according to the method of application of a laser beam to metallic powder. The DED method can be used to fabricate fine and hard 3D metallic structures by applying a strong laser beam to a thin layer of metallic powder. The PBF method involves slicing 3D graphics to be a certain height, laminating metal powders, and making a 3D structure using a laser. While the DED method has advantages such as laser cladding and metallic welding, it causes problems with low density when 3D shapes are created. The PBF method was introduced to address the structural density issues in the DED method and makes it easier to produce relatively dense 3D structures. In this paper, thin lines were produced by using PBF 3D printers with stainless-steel powder of roughly $30{\mu}m$ in diameter with a galvano scanner and fiber-transferred Nd:YAG laser beam. Experiments were carried out to find the optimal conditions for the width of a line depending on the processing times, laser power, spot size, and scan speed. The optimal conditions were two scanning processes in one line structure with a laser power of 30 W, spot size of $28.7{\mu}m$, and scan speed of 200 mm/s. With these conditions, a minimum width of about $85.3{\mu}m$ was obtained.

Effect of lamination pressing force for stiffness variation of a laminated rotor (적층로터의 강성 변경을 위한 적층판 압착력의 영향)

  • 김영춘;박희주;김경웅
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2003.06a
    • /
    • pp.788-792
    • /
    • 2003
  • Rotating machines are widely used in industrial world and especially motor and generator take up much part of it. As for this kind of motor and generator, electrical loss due to eddy current is the very important factor and that is also a primary factor causes heat generation. To solve this kind of problem like the above. insulated laminating silicon steel sheet is used to prevent eddy current effect. Laminated rotor is widely used as rotating shaft of motor and generator. Due to that, electrical loss and heat problem can be solved but designer meets another problem. In general. most of the motor and generator can be normally operated under 3,600 rpm because they are designed to have the first critical speed more than that speed. But nowadays, they should be operated more than the first critical speed as usual with the trend of high speed, large scale and high precision in industrial world. The critical speed can be determined from the inertia and stillness for the rotor and bearing of rotating systems. The laminated rotor stiffness can be hardly determined because it can be derived a lot factors for instance rotor material and shape, lamination material and shape, insulation material. lamination force and so on. In this paper, the change of the natural frequency of the motor was examined with the change of the lamination force as an experimental method and design criteria will be presented for motor & generator designer, who can apply the result of numerical analysis with equivalent diameter scheme with ease.

  • PDF

Electromagnetic Interference Shielding of Carbon Fibers-Reinforced Composites (탄소섬유강화 복합재료의 전자파 차폐특성)

  • 심환보;서민강;박수진
    • Polymer(Korea)
    • /
    • v.24 no.6
    • /
    • pp.860-868
    • /
    • 2000
  • In this work, the electro-magnetic interference (EMI) characteristics of PAN-based carbon fibers-reinforced composites are investigated with difference to manufactural parameters, i.e., fiber grade, fiber orientation angle, and laminating method. As a result, EMI shielding effectiveness (SE) of the composites greatly depends on a fiber orientation in composite angle. Especially, the fiber grade affects SE of composites in case of orientation angle of 0$^{\circ}$. Then the SE become greater as the change of electric character according to the arrangement directions, i.e., electrical anisotropy in the same constituent materials. This is due to the skin effect which is represented in the surface of electro-magnetic wave in high-frequency range. In all cases according to lamination methods, the composites represents SE of 83~98% over. Whereas, in symmetric and unsymmetric laminate structures, the SE decreases slightly as the laminate angles of composites increases. On the contrary. the repeating laminates structure shows the opposite tendency. Especially, 90$^{\circ}$ repeating laminate structure shows the SE more than 90% over the measuring frequency.

  • PDF

Fixed prostheses fabricated by direct metal laser sintering system: case report (Direct metal laser sintering 방식을 이용하여 제작한 다양한 고정성 보철물 수복 증례)

  • Baek, Ju-Won;Shin, Soo-Yeon
    • Journal of Dental Rehabilitation and Applied Science
    • /
    • v.32 no.3
    • /
    • pp.246-254
    • /
    • 2016
  • Nowadays, 3 dimentional (3D) printing, especially Direct Metal Laser Sintering (DMLS) system is used in dentistry. DMLS system has recently been introduced for fabrication metal framework for metal ceramic crowns to overcome the disadvantages of the casting method and computer aided design/computer aided manufacturing (CAD/CAM) milling system. DMLS system uses a high-temperature laser beam to selectively heat a substructure metal powder based on the CAD data with the framework design. A thin layer of the beamed area becomes fused, and the metal framework is completed by laminating these thin layers. Utilizing DMLS system to fabricate fixed prostheses is expected to achieve free-from shaping without mold and limitations from cutting tools, fabricate prostheses with complex geometry, prevent distortion and fabrication defects that inherent to conventional fabrication methods. The purpose of this case report is to demonstrate various fixed prostheses such as long span fixed prostheses, post to achieve satisfactory results in functional and esthetic aspects.

Effects of Sputtering Condition on Structural Properties of PZT Thin Films on LTCC Substrate by RF Magnetron Sputtering (저온동시소성세라믹 기판 위에 제작된 PZT 박막의 증착조건이 박막의 구조적 특성에 미치는 영향)

  • Lee, Kyung-Chun;Hwang, Hyun-Suk;Lee, Tae-Yong;Hur, Won-Young;Song, Joon-Tae
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.24 no.4
    • /
    • pp.297-302
    • /
    • 2011
  • Recently, low temperature co-fired ceramic (LTCC) technology is widely used in sensors, actuators and microsystems fields because of its very good electrical and mechanical properties, high reliability and stability as well as possibility of making 3D micro structures. In this study, we investigated the effects of sputtering gas ratio and annealing temperature on the crystal structure of $Pb(ZrTi)O_3$ (PZT) thin films deposited on LTCC substrate. The LTCC substrate with thickness of $400\;{\mu}m$ were fabricated by laminating 4 green tapes which consist of alumina and glass particle in an organic binder. The PZT thin films were deposited on Pt / Ti / LTCC substrates by RF magnetron sputtering method. The results showed that the crystallization of the films were enhanced as increasing $O_2$ mixing ratio. At about 25% $O_2$ mixing ratio, was well crystallized in the perovskite structure. PZT thin films was annealed at various temperatures. When the annealing temperature is lower, the PZT thin films become a phyrochlore phase. However, when the annealing temperature is higher than $600^{\circ}C$, the PZT thin films become a perovskite phase. At the annealing temperature of $700^{\circ}C$, perovskite PZT thin films with good quality structure was obtained.

High Temperature Grain Growth Behavior of Aerosol Deposited BaTiO3 Film on (100), (110) Oriented SrTiO3 Single Crystal (상온분사분말공정에 의해 SrTiO3 (100), (110) Seed에 코팅된 BaTiO3의 고온 성장 거동 분석)

  • Lim, Ji-Ho;Lee, Seung Hee;Kim, Ki Hyun;Ji, Sung-Yub;Jung, Suengwoon;Park, Chun-kil;Jung, Han-Bo;Jeong, Dae-Yong
    • Korean Journal of Materials Research
    • /
    • v.29 no.11
    • /
    • pp.684-689
    • /
    • 2019
  • Single crystals, which have complexed composition, are fabricated by solid state grain growth. However, it is hard to achieve stable properties in a single crystal due to trapped pores. Aerosol deposition (AD) is suitable for fabrication of single crystals with stable properties because this process can make a high density coating layer. Because of their unique features (nano sized grains, stress inner site), it is hard to fabricate single crystals, and so studies of grain growth behavior of AD film are essential. In this study, a $BaTiO_3$ coating layer with ${\sim}9{\mu}m$ thickness is fabricated using an aerosol deposition method on (100) and (110) cut $SrTiO_3$ single crystal substrates, which are adopted as seeds for grain growth. Each specimen is heat-treated at various conditions (900, 1,100, and $1,300^{\circ}C$ for 5 h). $BaTiO_3$ layer shows different growth behavior and X-ray diffraction depending on cutting direction of $SrTiO_3$ seed. Rectangular pillars at $SrTiO_3$ (100) and laminating thin plates at $SrTiO_3$ (110), respectively, are observed.

Development of Organic Paste Porcelain for Fixed Prostheses (유기조성물을 이용한 페이스트형 일반도재 시스템)

  • Han, Jung-Suk;Lee, Myung-Hyun;Kim, Dae-Hyun;Chung, Hun-Young
    • Journal of Dental Rehabilitation and Applied Science
    • /
    • v.20 no.2
    • /
    • pp.109-120
    • /
    • 2004
  • INTRODUCTION: The build-up method has been used for application of porcelain powder on the metal framework to make final tooth shape conventionally. This method takes time and need skill to mimic final shade and shape of porcelain fused to metal crown. The purpose of this study was to develop standard shape and shade laminating porcelain forms to reduce build-up time. METHODS: To make tooth form porcelain paste, several liquid organic compounds were added to conventional feldspathic porcelain. The amount of additives and rheologic property were tested to find out best composition. Comparison of mixing methods to reduced porosity, proper heating schedule, and measurement of shrinkage amount and residual organic materials were performed to set-up standard procedures. Finally, biaxial flexural strength and color of preformed laminated paste porcelain were compared with those of porcelain which fabricated by the conventional build-up method. RESULTS: There was no significant difference in physical properties and color stability between two fabrication methods after various testing methods. Conclusion: This new build-up method can be applied to fabricate the PFM crown and bridge without any loss of strength and optical properties.

Effects of Passivation Thin Films by Spray Coatings on Properties of Flexible CIGS Solar Cells (스프레이코팅법에 의한 패시베이션 박막이 플렉시블 CIGS 태양전지의 특성에 미치는 영향)

  • Lee, Sang Hee;Park, Byung Min;Kim, Ki Hong;Chang, Young Chul;Pyee, Jaeho;Chang, Ho Jung
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.23 no.3
    • /
    • pp.57-61
    • /
    • 2016
  • In order to protect the solar cells from the moisture and oxygen, we evaluated the electrical and optical properties for the $Cu(In,Ga)Se_2$ (CIGS) solar cells which were prepared by the spray coating method. Generally, the EVA (ethylene-vinyl acetate) films are laminated to protect the CIGS flexible solar cells, which results in a high cost process due to complicated devices. In this study, we tried to prepare the protection layers of the flexible CIGS flexible solar cells by using spray coating method instead of conventional laminating films in order to reduce the device weight as well as the process time. The CIGS solar cells with spray coating method showed an enhanced efficiency than the before treated sample (2.77% to 2.93%) and relatively proper water vapor transmission rate of the solar cells about 62.891 gm/[$m^2-day$].

A Consideration on its Kinetics for shelf-life Prediction of Meat Sausage (축육소시지 저장성 산출을 위한 속도론적 고찰)

  • Kim, Soo-Min
    • Korean Journal of Food Science and Technology
    • /
    • v.24 no.3
    • /
    • pp.256-260
    • /
    • 1992
  • This study was conducted to calculate and predict the shelf-life of meat sausage through physicochemical and biological analysis. Judging from physico-chemical components, it can be found out the most effective indicator in meat sausage. And also, the materials used for packaging is cellulose #23 in inner-packaging and CN/HDPE laminating film in outer-packaging. The changes of the most effective indicator were discussed through the method of kinetic analysis. Judging from physico-chemical components, VBN was the most available component in quality judgement of meat sausage and their upper limiting contents were 20 mg%. It is possible to calculate and predict the shelf-life of meat sausage through the regression equation and $Q_{10}$ value. As a result, the shelf-life prediction was $58{\sim}63$ days at $10^{\circ}C$, $47{\sim}51$ days at $20^{\circ}C$ and 26 days at $40^{\circ}C$, respectively, but the difference between two methods showed about $4{\sim}5$ days. $Q_{10}$ value on the changes contents was 1.35 at acceralated temperature $40^{\circ}C$. The reaction rate of VBN contents could be interpreted as a first order reaction that divided into 2 periods with different reaction rate constants. The corresponding Arrhenius activation energies were 2.959 Kcal/mole and 3.632 Kcal/mole, respectively.

  • PDF

Strengthening of Fiber-Reinforced $\gamma$-LiAlO$_2$ Matrixes for Molten Carbonate Fuel Cell by Laminatin (용융탄산염 연료전지용 화이버 강화 $\gamma$-LiAlO$_2$ 매트릭스의 적층에 의한 강도 증진)

  • 현상훈;조성철;홍성안
    • Journal of the Korean Ceramic Society
    • /
    • v.36 no.2
    • /
    • pp.107-115
    • /
    • 1999
  • Microstructural variation and strengthening effects with lamination methods of alumina fiber-reinforced ${\gamma}$-LiAlO2 matrixes for Molten Carbonate Fuel Cell(MCFC) were studied. The porosities of all matrix laminated by hot-pressing of two green sheets under 1 kg/$\textrm{cm}^2$ at 45$^{\circ}C$ for 1 min and by double-casting which the second layer cast on the first green sheet dried for 3.5h were more than 50%. The strength of the Al2O3 fiber-reinforced matrix prepared by lamination was enhanced by 70% in comparison with the non-laminated matrix (115 gf/$\textrm{mm}^2$) and the strength-directionality due to fiber-orientation also could be removed. The strength of matrixes laminated by triple-casting was higher than that of the double-cast matrix, but triple-cast matrix showed the directionality with the casting direction, and furthermore its porosity was less than 50%. Although the strength of matrixes laminated by double-casting (195 gf/$\textrm{mm}^2$) is slightly less than that of matrixes laminated by hot-pressing (212 gf/$\textrm{mm}^2$), the double-casting method was evaluated to be more efficient laminating process in MCFC matrix processing.

  • PDF