• Title/Summary/Keyword: Laminated glass

Search Result 146, Processing Time 0.02 seconds

Fracture Toughness of Glass Fiber Reinforced Laminated Timbers (유리섬유 보강적층재의 파괴인성 특성)

  • Kim, Keon-ho;Hong, Soon-Il
    • Journal of the Korean Wood Science and Technology
    • /
    • v.43 no.6
    • /
    • pp.861-867
    • /
    • 2015
  • The Compact Tension (CT) type test was performed in order to evaluate the fracture toughness performance of glass fiber-reinforced laminated timber. Glass fiber textile and sheet Glass fiber reinforced plastic were used as reinforcement. The reinforced laminated timber was formed by inserting and laminating the reinforcement between laminated woods. Compact tension samples are produced under ASTM D5045. The sample length was determined by taking account of the end distance of 7D, and bolt holes (12 mm, 16 mm, 20 mm) had been made at the end of artificial notches in advance. The fracture toughness load of sheet fiberglass reinforced plastic reinforced laminated timber was increased 33 % in comparison to unreinforced laminated timber while the glass fiber textile reinforced laminated timber was increased 152 %. According to Double Cantilever Beam theory, the stress intensity factor was 1.08~1.38 for sheet glass fiber reinforced plastic reinforced laminated timber and 1.38~1.86 for glass fiber textile reinforced laminated timber, respectively. That was because, for the glass fiber textile reinforced laminated timber, the fiber array direction of glass fiber and laminated wood orthogonal to each other suppressed the split propagation in the wood.

Experimental Study and Finite Element Analysis about Vehicle Laminated Glass Subject to Headform Impact (머리모형 충돌에 의한 자동차 접합유리의 실험적 연구 및 유한요소해석)

  • Choi, Jihun;Oh, Wontek;Kim, Jonghyuk;Park, Jongchan
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.25 no.3
    • /
    • pp.374-379
    • /
    • 2017
  • In vehicle to pedestrian accidents, cracks occur in the vehicle laminated glass due to impact of a pedestrian's head. In this study, FMH(Free Motion Headform) was used to experiment on and analyze the crack patterns on a vehicle laminated glass that collides with an adult headform at speeds of 20 km/h, 30 km/h, and 40 km/h, respectively. Applying the acquired experimental data and material property of the vehicle laminated glass to the structural analysis program LS-Dyna, we could develop the FE model of vehicle laminated glass similar to real vehicle laminated glass. We could estimate the head impact velocity and pedestrian's vehicle impact velocity using the Madymo program.

An approach to a novel modelling of structural reinforced glass beams in modern material components

  • Foti, Dora;Carnimeo, Leonarda;Lerna, Michela;Sabba, Maria Francesca
    • Advances in Computational Design
    • /
    • v.7 no.3
    • /
    • pp.173-188
    • /
    • 2022
  • In modern buildings, glass is considered a structurally unsafe material due to its brittleness and unpredictable failure behavior. The possible use of structural glass elements (i.e., floors, beams and columns) is generally prevented by its poor tensile strength and a frequent occurrence of brittle failures. In this study an innovative modelling based on an equivalent thickness concept of laminated glass beam reinforced with FRP (Fiber Reinforced Polymer) composite material and of glass plates punched is presented. In particular, the novel numerical modelling applied to an embedding Carbon FRP-rod in the interlayer of a laminated structural glass beam is considered in order to increase both its failure strength, together with its post-failure strength and ductility. The proposed equivalent modelling of different specimens enables us to carefully evaluate the effects of this reinforcement. Both the responses of the reinforced beam and un-reinforced one are evaluated, and the corresponding results are compared and discussed. A novel equivalent modelling for reinforced glass beams using FRP composites is presented for FEM analyses in modern material components and proved estimations of the expected performance are provided. Moreover, the new suggested numerical analysis is also applied to laminated glass plates with wide holes at both ends for the technological reasons necessary to connect a glass beam to a structure. Obtained results are compared with an integer specimen. Experimental considerations are reported.

Modeling interply debonding in laminated architectural glass subject to low velocity impact

  • Flocker, F.W.;Dharani, L.R.
    • Structural Engineering and Mechanics
    • /
    • v.6 no.5
    • /
    • pp.485-496
    • /
    • 1998
  • Standard finite element wave propagation codes are useful for determining stresses caused by the impact of one body with another; however, their applicability to a laminated system such as architectural laminated glass is limited because the important interlayer delamination process caused by impact loading is difficult to model. This paper presents a method that allows traditional wave propagation codes to model the interlayer debonding of laminated architectural glass subject to low velocity, small missile impact such as that which occurs in severe windstorms. The method can be extended to any multilayered medium with adhesive bonding between the layers. Computational results of concern to architectural glazing designers are presented.

Physical Properties of Fabric E-glass Fiber Reinforced Laminated Timber (I) - Mechanical Properties - (직물유리섬유 강화집성재의 물리적 특성(제1보) - 기계적 특성 -)

  • Jung, In-Suk;Lee, Weon-Hee;Byeon, Hee-Seop
    • Journal of the Korean Wood Science and Technology
    • /
    • v.31 no.5
    • /
    • pp.23-34
    • /
    • 2003
  • This study was carried out to investigate the mechanical properties of fabric E-glass fiber reinforced laminated timber. Specimens used to Korean red pine(Pinus densiflora) and Japanese larch(Larix kaemferi). Fabric E-glass fiber was inserted in the solid wood with aqueous polymer-isocyanate resin(MPU-500). The results were as follows: 1. Aqueous polymer-isocyanate resin(MPU-500) was good resin to manufacture laminated timber. specially, it was satisfied to property standard of construction laminated timber(KS F 3021) except for two ply glass fiber. 2. Bending and shear strengths of solid wood inserted with fabric glass fibers were not different from control solid wood. But, proportional limit bending stress was increased following the number of fabric glass fibers. Therefore, it was considered that to improve the bending and shear strength of fabric glass fiber reinforced laminated timber, the glass fiber thickness and its mesh should be modified to fitness following working conditions.

Calculation model for layered glass

  • Ivica Kozar;Goran Suran
    • Coupled systems mechanics
    • /
    • v.12 no.6
    • /
    • pp.519-530
    • /
    • 2023
  • This paper presents a mathematical model suitable for the calculation of laminated glass, i.e. glass plates combined with an interlayer material. The model is based on a beam differential equation for each glass plate and a separate differential equation for the slip in the interlayer. In addition to slip, the model takes into account prestressing force in the interlayer. It is possible to combine the two contributions arbitrarily, which is important because the glass sheet fabrication process changes the stiffness of the interlayer in ways that are not easily predictable and could introduce prestressing of varying magnitude. The model is suitable for reformulation into an inverse procedure for calculation of the relevant parameters. Model consisting of a system of differential-algebraic equations, proved too stiff for cases with the thin interlayer. This novel approach covers the full range of possible stiffnesses of layered glass sheets, i.e., from zero to infinite stiffness of the interlayer. The comparison of numerical and experimental results contributes to the validation of the model.

A Comparative Study on the Sound Insulation Characteristics of Laminated Glass in Accordance with Material and Composition of Interlayer Film (Interlayer film 재료 및 구성에 따른 접합유리 차음성능 비교)

  • Hong, Jiyoung;Ko, Sangwon;Koh, Hyo-In;Jang, Seungho
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2013.10a
    • /
    • pp.501-505
    • /
    • 2013
  • It is well known that monolithic glass has specific coincidence dip allowing transmittance of noise around the critical frequency. Laminated glass, made of a polyvinyle butyral(PVB) interlayer sandwiched by two panes of glass sheet, has long served for the advantage in noise attenuation properties as well as the safety purpose. More research on the improvement of sound insulation performance is needed, considering much of the noise is still transmitted through the glass. As a preliminary study, authors have made several test specimens, varied combinations of glass and interlayer film, to optimize the acoustic performance. Experimental investigation was carried out to study the sound transmission loss of test specimens in the reverberation chamber by using sound intensity method. Several new applications, instead of the existing PVB laminated glass, show better results in sound transmission loss and low temperature have a bad influence on the acoustic performance.

  • PDF

Developing a Study on the Extracting Method of Laminated Glass Fiber from FRP Boats (폐FRP 선박으로부터 섬유보강재 추출공정 개선 연구)

  • Yoon, Koo-Young
    • Journal of the Korean Society for Marine Environment & Energy
    • /
    • v.12 no.1
    • /
    • pp.23-28
    • /
    • 2009
  • There is several ways of recycling methods for waste FRP boats. The main one is mechanical recycling that is one of the simple and technically proven methods. It recently has been reported that FRP can be recycled by separating into laminated glass fiber layers instead of crushing into powder. Even though the mechanical recycling is a good way for the eligibility of laminated glass fiber reinforced material, the system should have another option which can collect resin of FRP. Because the resin is still very useful renewable energy source, that cannot be discarded, But FRP is made up of laminated glass fiber(roving cloth layer) which is fire retardant substances and very hard to break into each layer. Due to the high cost of fossil energy the waste plastics should be regenerated to the source of renewable energy. Laminated glass fiber which is recyclable in a very limited way, is currently a serious barrier to waste FRP boat regenerating. This study is to propose a new extracting method which is efficient and environment friendly FRP waste regenerating system. The recycled glass fiber which is obtained by the separation of the roving layer from FRP waste has been found to be useful for concrete(FRC) products or concrete(FRC) structures as fiber reinforced material. And it can be successively applied to renewable energy applications using the waste resins of FRP residue without laminated glass fiber.

  • PDF

An experimental study on the flexural performance of laminated glass

  • Huang, Xiaokun;Liu, Gang;Liu, Qiang;Bennison, Stephen J.
    • Structural Engineering and Mechanics
    • /
    • v.49 no.2
    • /
    • pp.261-271
    • /
    • 2014
  • This paper reported an experimental study on creep behaviors of PVB and Ionoplast laminated glass (LG) under load duration of 30 days. The tests were carried out in room temperature ($23^{\circ}C$). The study revealed that after sustaining loads for 30 days, the mid-span deflection of PVB LG increased by almost 102% compared with its short term deflection, while that of Ionoplast LG approximately increased by 14%; composite effects between two glass plies in PVB LG gradually reduced with time, but did not fully vanish at the 30th day; two glass plies in Ionoplast LG on the other hand was able to withstand loads as an effective composite section during the entire loading period; the creep behaviors of both LG were not finished yet at the 30th day. In addition to this, also studied was the varying of the bending stresses of PVB and Ionoplast LG under load duration of 2 hours. The tests were carried out in ambient temperatures of $30^{\circ}C$, $50^{\circ}C$ and $80^{\circ}C$ respectively. It was found that under a given load, although the bending stresses of both LG increased with increasing temperature, for PVB LG the increasing rate of the bending stress decreased with increasing temperature, while for Ionoplast LG the increasing rate of the bending stress increased with increasing temperature.

Layer-wise numerical model for laminated glass plates with viscoelastic interlayer

  • Zemanova, Alena;Zeman, Jan;Janda, Tomas;Sejnoha, Michal
    • Structural Engineering and Mechanics
    • /
    • v.65 no.4
    • /
    • pp.369-380
    • /
    • 2018
  • In this paper, a multi-layered finite element model for laminated glass plates is introduced. A layer-wise theory is applied to the analysis of laminated glass due to the combination of stiff and soft layers; the independent layers are connected via Lagrange multipliers. The von $K{\acute{a}}rm{\acute{a}}n$ large deflection plate theory and the constant Poisson ratio for constitutive equations are assumed to capture the possible effects of geometric nonlinearity and the time/temperature-dependent response of the plastic foil. The linear viscoelastic behavior of a polymer foil is included by the generalized Maxwell model. The proposed layer-wise model was implemented into the MATLAB code and verified against detailed three-dimensional models in ADINA solver using different hexahedral finite elements. The effects of temperature, load duration, and creep/relaxation are demonstrated by examples.