Browse > Article
http://dx.doi.org/10.12989/acd.2022.7.3.173

An approach to a novel modelling of structural reinforced glass beams in modern material components  

Foti, Dora (Department of Sciences of Civil Engineering and Architecture, Polytechnic University of Bari)
Carnimeo, Leonarda (Department of Electrical & Information Engineering, Polytechnic University of Bari)
Lerna, Michela (Department of Sciences of Civil Engineering and Architecture, Polytechnic University of Bari)
Sabba, Maria Francesca (Department of Sciences of Civil Engineering and Architecture, Polytechnic University of Bari)
Publication Information
Advances in Computational Design / v.7, no.3, 2022 , pp. 173-188 More about this Journal
Abstract
In modern buildings, glass is considered a structurally unsafe material due to its brittleness and unpredictable failure behavior. The possible use of structural glass elements (i.e., floors, beams and columns) is generally prevented by its poor tensile strength and a frequent occurrence of brittle failures. In this study an innovative modelling based on an equivalent thickness concept of laminated glass beam reinforced with FRP (Fiber Reinforced Polymer) composite material and of glass plates punched is presented. In particular, the novel numerical modelling applied to an embedding Carbon FRP-rod in the interlayer of a laminated structural glass beam is considered in order to increase both its failure strength, together with its post-failure strength and ductility. The proposed equivalent modelling of different specimens enables us to carefully evaluate the effects of this reinforcement. Both the responses of the reinforced beam and un-reinforced one are evaluated, and the corresponding results are compared and discussed. A novel equivalent modelling for reinforced glass beams using FRP composites is presented for FEM analyses in modern material components and proved estimations of the expected performance are provided. Moreover, the new suggested numerical analysis is also applied to laminated glass plates with wide holes at both ends for the technological reasons necessary to connect a glass beam to a structure. Obtained results are compared with an integer specimen. Experimental considerations are reported.
Keywords
carbon FRP-rod; laminated glass plate; reinforced glass beam; structural glass modelling;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Carnimeo, L. and Nitti, R. (2014), "ANN-based approach for monitoring early warnings of risk in historic buildings via image novelty detection", Key Eng. Mater., 628, 212-217. https://doi.org/10.4028/www.scientific.net/KEM.628.212.   DOI
2 Bernard, F. and Daudeville, L. (2009), "Point fixings in annealed and tempered glass structures: Modelling and optimization of bolted connections", Eng. Struct., 31(4), 946-955. https://doi.org/10.1016/j.engstruct.2008.12.004.   DOI
3 Foti, D., Lerna, M. and Vacca, V. (2018), "Experimental characterization of traditional mortars and polyurethane foams in masonry wall", Adv. Mater. Sci. Eng., 2018, 8640351. https://doi.org/10.1155/2018/8640351.   DOI
4 Galuppi, L. and Royer-Carfagni, G. (2020), "Enhanced Effective Thickness for laminated glass beams and plates under torsion", Eng. Struct., 206, 110077. https://doi.org/10.1016/j.engstruct.2019.110077.   DOI
5 Ivanov, I.V. (2006), "Analysis, modelling, and optimization of laminated glasses as plane beam", Int. J. Solid. Struct., 43(22-23), 6887-6907. https://doi.org/10.1016/j.ijsolstr.2006.02.014.   DOI
6 Louter, P.C. (2007), "Adhesively bonded reinforced glass beams", Heron-English Edition, 52(1/2), 31.
7 Louter, C. (2011), "Fragile yet ductile, structural aspects of reinforced glass beams, dissertation", Ph.D. Dissertation, Delft University of Technology, Delft, NL.
8 Louter, C., Belis, J., Veer, F. and Lebet, J.P. (2012), "Structural response of SG-laminated reinforced glass beams; experimental investigations on the effects of glass type, reinforcement percentage and beam size", Eng. Struct., 36, 292-301. https://doi.org/10.1016/j.engstruct.2011.12.016.   DOI
9 Martin, M., Centelles, X., Sole, A., Barreneche, C., Fernandez, A.I. and Cabeza, L.F. (2020), "Polymeric interlayer materials for laminated glass: A review", Constr. Build. Mater., 230, 116897. https://doi.org/10.1016/j.conbuildmat.2019.116897.   DOI
10 Martens, K., Caspeele, R. and Belis, J.L.I.F. (2015), "Development of composite glass beams-A review", Eng. Struct., 101, 1-15. https://doi.org/10.1016/j.engstruct.2015.07.006.   DOI
11 Mondkar, D.P., Powell, G.H. (1977), "Finite element analysis of non-linear static and dynamic response", Int. J. Numer. Meth. Eng., 11(3), 499-520. https://doi.org/10.1002/nme.1620110309.   DOI
12 Pourmoghaddam, N. and Schneider, J. (2018), "Finite-element analysis of the residual stresses in tempered glass plates with holes or cut-outs", Glass Struct. Eng., 3(1) 17-37. https://doi.org/10.1007/s40940-018-0055-z.   DOI
13 Norville, H.S., King, K.W. and Swofford, J.L. (1998), "Behavior and strength of laminated glass", J. Eng. Mech., 124(1), 46-53. https://doi.org/10.1061/(ASCE)0733-9399(1998)124:1(46).   DOI
14 Olgaard, A.B., Nielsen, J.H. and Olesen, J.F. (2009), "Design of mechanically reinforced glass beams: modelling and experiments", Struct. Eng. Int., 19(2), 130-136. https://doi.org/10.2749/101686609788220169.   DOI
15 Overend, M., Butchart, C., Lambert, H. and Prassas, M. (2014), "The mechanical performance of laminated hybrid-glass units", Compos. Struct., 110, 163-173. https://doi.org/10.1016/j.compstruct.2013.11.009.   DOI
16 Premrov, M., Zlatinek, M. and Strukelj, A. (2014), "Experimental analysis of load-bearing timber-glass Ibeam", Constr. Unique Build. Struct., 4(19), 11-20. https://doi.org/10.18720/CUBS.19.2.   DOI
17 prEN 13474-3 (2007), Glass in buildings - Design of Glass Panels - Part 3: General method of calculation and determination of strength of glass by testing, European Committee for Standardization CEN, Brussels, BE.
18 Richards, B. (2006), "New glass architecture", Laurence King Publishing, London, U.K.
19 Overend, M., Parke, G.A. and Buhagiar, D. (2007), "Predicting failure in glass - a general crack growth model", J. Struct. Eng., 133(8), 1146-1155. https://doi.org/10.1061/(ASCE)0733-9445(2007)133:8(1146).   DOI
20 Corradi, M. and Speranzini, E. (2019), "Post-cracking capacity of glass beams reinforced with steel fibers", Materials, 12(2), 231. https://doi.org/10.3390/ma12020231.   DOI
21 Fischer-Cripps, A.C. and Collins, R.E. (1995), "Architectural glazings: Design standards and failure models", Build. Environ., 30(1), 29-40. https://doi.org/10.1016/0360-1323(94)E0026-N.   DOI
22 STRAUSS 7, v 2.3.3, Strand7 Pty Ltd, Sydney, Australia. https://www.strand7.com/
23 Santarsiero, M., Louter, C. and Nussbaumer, A. (2017), "Laminated connections for structural glass components: A full-scale experimental study", Glass Struct. Eng., 2(1), 79-101. https://doi.org/10.1007/s40940-016-0033-2.   DOI
24 Slivansky, M. (2012), "Theoretical verification of the reinforced glass beams", Procedia Eng., 40, 417-422. https://doi.org/10.1016/j.proeng.2012.07.118.   DOI
25 Speranzini, E. and Agnetti, S. (2014), "Strengthening of glass beams with steel reinforced polymer (SRP)", Compos. Part B Eng., 67, 280-289. https://doi.org/10.1016/j.compositesb.2014.06.035.   DOI
26 Timmel, M., Kolling, S., Osterrieder, P. and Du Bois, P.A. (2007), "A finite element model for impact simulation with laminated glass", Int. J. Impact Eng., 34(8),1465-1478. https://doi.org/10.1016/j.ijimpeng.2006.07.008.   DOI
27 Veer, F.A. and Rodichev, Y.M. (2011), "The structural strength of glass: hidden damage", Strength Mater., 43(3), 302. https://doi.org/10.1007/s11223-011-9298-5.   DOI
28 Watson, J., Nielsen, J. and Overend, M. (2013), "A critical flaw size approach for predicting the strength of bolted glass connections", Eng. Struct., 57, 87-99. https://doi.org/10.1016/j.engstruct.2013.07.026.   DOI
29 Weller, B., Meier, A. and Weimar, T. (2010), "Glass-steel beams as structural members of facades", Challenging Glass Conference Proceedings, 2, 523-531. https://doi.org/10.7480/cgc.2.2350.   DOI
30 Wiechert, E. (1893), "Gesetze der elastischen Nachwirkung fur constante Temperatur", Annalen der Physik, 286(11), 546-570. https://doi.org/10.1002/andp.18932861110.   DOI
31 Zienkiewicz, O.C., Taylor, R.L., Nithiarasu, P. and Zhu, J.Z. (1977), The finite element method, McGrawhill, London, U.K.
32 Dural, E. (2016), "Analysis of delaminated glass beams subjected to different boundary conditions", Compos. Part B Eng., 101,132-146. https://doi.org/10.1016/j.compositesb.2016.07.002   DOI
33 Chen, S., Zang, M., Wang, D., Zheng, Z. and Zhao, C. (2016), "Finite element modelling of impact damage in polyvinyl butyral laminated glass", Compos. Struct., 138, 1-11. https://doi.org/10.1016/j.compstruct.2015.11.042.   DOI
34 Carnimeo, L., Foti, D. and Potenza, F. (2015b), "On protecting and managing slender buildings from risk events via a multitask monitoring network", Procedings of the 7th International Conference on Structural Health Monitoring of Intelligent Infrastructure ISHMII, 1-8, Turin, Italy.
35 Foti, D., Lerna, M., Carnimeo, L. and Vacca, V. (2020), "Finite element models and numerical analysis of a structural glass beam reinforced with embedded carbon fibre rod", Int. J. Mech., 14, 163-167. http://doi.org/10.46300/9104.2020.14.22.   DOI
36 Ballarini, R., Pisano, G. and Carfagni, G.R. (2016), "New calibration of partial material factors for the structural design of float glass. Comparison of bounded and unbounded statistics for glass strength", Constr. Build. Mater., 121, 69-80. https://doi.org/10.1016/j.conbuildmat.2016.05.136.   DOI
37 Bedon, C. and Louter, C. (2018), "Numerical investigation on structural glass beams with GFRP-embedded rods, including effects of pre-stress", Compos. Struct., 184, 650-661. https://doi.org/10.1016/j.compstruct.2017.10.027.   DOI
38 Bedon, C., Zhang, X., Santos, F., Honfi, D., Kozlowski, M., Arrigoni, M., Figuli, L. and Lange, D. (2018), "Performance of structural glass facades under extreme loads-Design methods, existing research, current issues and trends", Constr. Build. Mater., 163, 921-937. https://doi.org/10.1016/j.conbuildmat.2017.12.153.   DOI
39 Cagnacci, E., Orlando, M. and Spinelli, P. (2009), "Experimental campaign and numerical simulation of the behavior of reinforced glass beams", Proceedings of the Glass Performance Days-2009, Tamper, Finland.
40 Carnimeo, L., Foti, D. and Vacca, V. (2015c), "On damage monitoring in historical buildings via neural networks", Proceedings of IEEE Workshop on Environmental, Energy, and Structural Monitoring Systems, 157-161. https://doi.org/10.1109/EESMS.2015.7175870.   DOI
41 Bedon, C. and Santarsiero, M. (2018), "Transparency in structural glass systems via mechanical, adhesive, and laminated connections-existing research and developments", Adv. Eng. Mater., 20(5), 1700815. https://doi.org/10.1002/adem.201700815.   DOI
42 Beason, W.L. and Morgan, J.R. (1984), "Glass failure prediction model", J. Struct. Eng., 110(2),197-212. https://doi.org/10.1061/(ASCE)0733-9445(1984)110:2(197).   DOI
43 Bedon, C. and Louter, C. (2014), "Exploratory numerical analysis of SG-laminated reinforced glass beam experiments", Eng. Struct., 75, 457-468. https://doi.org/10.1016/j.engstruct.2014.06.022   DOI
44 Bedon, C. and Louter, C. (2019), "Structural glass beams with embedded GFRP, CFRP or steel reinforcement rods: Comparative experimental, analytical and numerical investigations", J. Build. Eng., 22, 227-241. https://doi.org/10.1016/j.jobe.2018.12.008.   DOI
45 Amadio, C., Badalassi, M., Bedon, C., Biolzi, L., Briccoli Bati, S., Cagnacci, E., ... & Spinelli, P. (2014), CNR-DT 210/2013 (2014), Istruzioni per la Progettazione, l'Esecuzione ed il Controllo delle Strutture di Vetro; Consiglio Nazionale delle Ricerche; Roma, Italy.
46 Galuppi L. and Royer-Carfagni, G. (2012), "Laminated beams with viscoelastic interlayer", Int. J. Solid. Struct., 49(18), 2637-2645. https://doi.org/10.1016/j.ijsolstr.2012.05.028.   DOI
47 Galuppi, L. and Royer-Carfagni, G. (2014), "Enhanced effective thickness of multi-layered laminated glass", Compos. Part B Eng., 64, 202-213. https://doi.org/10.1016/j.compositesb.2014.04.018.   DOI
48 Speranzini, E. and Agnetti, S. (2015), "Flexural performance of hybrid beams made of glass and pultruded GFRP", Constr. Build. Mater., 94, 249-262. https://doi.org/10.1016/j.conbuildmat.2015.06.008.   DOI
49 Asik, M.Z. (2003), "Laminated glass plates: Revealing of nonlinear behavior", Comput. Struct., 81(28-29), 2659-2671. https://doi.org/10.1016/S0045-7949(03)00325-0.   DOI
50 Asik, M.Z. and Tezcan, S. (2005), "A mathematical model for the behavior of laminated glass beams", Comput. Struct., 83 (21-22), 1742-1753. https://doi.org/10.1016/j.compstruc.2005.02.020.   DOI
51 Asik, M.Z. and Tezcan, S. (2006), "Laminated glass beams: Strength factor and temperature effect", Comput. Struct., 84(5-6), 364-373. https://doi.org/10.1016/j.compstruc.2005.09.025.   DOI
52 Badalassi, M., Biolzi, L., Royer-Carfagni, G. and Salvatore, W. (2014), "Safety factors for the structural design of glass", Constr. Build. Mater., 55, 114-127. https://doi.org/10.1016/j.conbuildmat.2014.01.005.   DOI
53 Carnimeo, L., Foti, D. and Ivorra, S. (2015a), "On modeling an innovative monitoring network for protecting and managing cultural heritage from risk events", Key Eng. Mater., 628, 243-249. https://doi.org/10.4028/www.scientific.net/KEM.628.243.   DOI
54 Belis, J., Callewaert, D., Delince, D. and Van Impe, R. (2009), "Experimental failure investigation of a hybrid glass/steel beam", Eng. Fail. Anal., 16(4) 1163-1173. https://doi.org/10.1016/j.engfailanal.2008.07.011.   DOI