• Title/Summary/Keyword: Laminated Composite Structures

Search Result 389, Processing Time 0.021 seconds

On static bending of multilayered carbon nanotube-reinforced composite plates

  • Daikh, Ahmed Amine;Bensaid, Ismail;Bachiri, Attia;Houari, Mohamed Sid Ahmed;Tounsi, Abdelouahed;Merzouki, Tarek
    • Computers and Concrete
    • /
    • v.26 no.2
    • /
    • pp.137-150
    • /
    • 2020
  • In this paper, the bending behavior of single-walled carbon nanotube-reinforced composite (CNTRC) laminated plates is studied using various shear deformation plate theories. Several types of reinforcement material distributions, a uniform distribution (UD) and three functionally graded distributions (FG), are inspected. A generalized higher-order deformation plate theory is utilized to derive the field equations of the CNTRC laminated plates where an analytical technique based on Navier's series is utilized to solve the static problem for simply-supported boundary conditions. A detailed numerical analysis is carried out to examine the influence of carbon nanotube volume fraction, laminated composite structure, side-to-thickness, and aspect ratios on stresses and deflection of the CNTRC laminated plates.

Delamination identification of laminated composite plates using measured mode shapes

  • Xu, Yongfeng;Chen, Da-Ming;Zhu, Weidong;Li, Guoyi;Chattopadhyay, Aditi
    • Smart Structures and Systems
    • /
    • v.23 no.2
    • /
    • pp.195-205
    • /
    • 2019
  • An accurate non-model-based method for delamination identification of laminated composite plates is proposed in this work. A weighted mode shape damage index is formulated using squared weighted difference between a measured mode shape of a composite plate with delamination and one from a polynomial that fits the measured mode shape of the composite plate with a proper order. Weighted mode shape damage indices associated with at least two measured mode shapes of the same mode are synthesized to formulate a synthetic mode shape damage index to exclude some false positive identification results due to measurement noise and error. An auxiliary mode shape damage index is proposed to further assist delamination identification, by which some false negative identification results can be excluded and edges of a delamination area can be accurately and completely identified. Both numerical and experimental examples are presented to investigate effectiveness of the proposed method, and it is shown that edges of a delamination area in composite plates can be accurately and completely identified when measured mode shapes are contaminated by measurement noise and error. In the experimental example, identification results of a composite plate with delamination from the proposed method are validated by its C-scan image.

Optimal layout of a partially treated laminated composite magnetorheological fluid sandwich plate

  • Manoharan, R.;Vasudevan, R.;Jeevanantham, A.K.
    • Smart Structures and Systems
    • /
    • v.16 no.6
    • /
    • pp.1023-1047
    • /
    • 2015
  • In this study, the optimal location of the MR fluid segments in a partially treated laminated composite sandwich plate has been identified to maximize the natural frequencies and the loss factors. The finite element formulation is used to derive the governing differential equations of motion for a partially treated laminated composite sandwich plate embedded with MR fluid and rubber material as the core layer and laminated composite plate as the face layers. An optimization problem is formulated and solved by combining finite element analysis (FEA) and genetic algorithm (GA) to obtain the optimal locations to yield maximum natural frequency and loss factor corresponding to first five modes of flexural vibration of the sandwich plate with various combinations of weighting factors under various boundary conditions. The proposed methodology is validated by comparing the natural frequencies evaluated at optimal locations of MR fluid pockets identified through GA coupled with FEA and the experimental measurements. The converged results suggest that the optimal location of MR fluid pockets is strongly influenced not only by the boundary conditions and modes of vibrations but also by the objectives of maximization of natural frequency and loss factors either individually or combined. The optimal layout could be useful to apply the MR fluid pockets at critical components of large structure to realize more efficient and compact vibration control mechanism with variable damping.

Investigation of Impact Behavior by Thickness variation of Laminated Composite Subjected to Low-Velocity Impact (저속충격을 받는 복합적층판의 두께 변화에 따른 충격거동 조사)

  • Kwon, Suk-Jun;Jeon, Jin-Hyung;Kim, Seung-Deog
    • Proceeding of KASS Symposium
    • /
    • 2008.05a
    • /
    • pp.74-79
    • /
    • 2008
  • In this study, impact transient responses of (Graphite/Epoxy) laminated composite subjected to low-velocity impact are investigated using a finite element method. Dynamic von-Karman plate equations considering large deflection of plate are modified to include the effect of transverse shear deformations as in Mindlin plate theory and also the rotary inertia effect is considered. The convergence of transient responses is used contact law established through the statical indentation test. We investigate displacements, contact forces and strains by thickness variation of various laminated composite. We compare and analyze each results.

  • PDF

Undamped Dynamic Response of Anisotropic Laminated Composite Plates and Shell Structures using a Higher-order Shear Deformation Theory (비등방성 복합적층판 및 쉘의 고차전단변형을 고려한 비감쇄 동적응답)

  • Yoon, Seok Ho;Han, Seong Cheon;Chang, Suk Yoon
    • Journal of Korean Society of Steel Construction
    • /
    • v.9 no.3 s.32
    • /
    • pp.333-340
    • /
    • 1997
  • This paper will expand the third-order shear deformation theory by the double-Fourier series and reduce to the solution of a system of ordinary differential equations in time, which are integrated numerically using Newmark's direct integration method and clarify the undamped dynamic responses for the cross-ply and antisymmetric angle-ply laminated composite plates and shells with simply supported boundary condition. Numerical results for deflections are presented showing the effect of side-to-thickness ratio, aspect ratio, material anisotropy, and lamination scheme.

  • PDF

Three-dimensional stresses analysis in rotating thin laminated composite cylindrical shells

  • Ahmadi, Isa;Najafi, Mahsa
    • Steel and Composite Structures
    • /
    • v.22 no.5
    • /
    • pp.1193-1214
    • /
    • 2016
  • In this paper, the 3D stress state and inter-laminar stresses in a rotating thin laminated cylinder shell are studied. The thickness of the cylinder is supposed to be thin and it is made of laminated composite material and can have general layer stacking. The governing equations of the cylindrical shell are obtained by employing the Layerwise theory (LWT). The effect of rotation is considered as rotational body force which is induced due to the rotation of the cylinder about its axis. The Layerwise theory (LWT), is used to discrete the partial differential equations of the problem to ordinary ones, in terms of the displacements of the mathematical layers. By applying the Free boundary conditions the solution of the governing equations is completed and the stress state, the inter-laminar stresses, and the edge effect in the rotating cylindrical shells are investigated in the numerical results. To verify the results, LWT solution is compared with the results of the FEM solution and good agreements are achieved. The inter-laminar normal and shear stresses in rotating cylinder are studied and effects of layer stacking and angular velocity is investigated in the numerical results.

Free vibration analysis of angle-ply laminated composite and soft core sandwich plates

  • Sahla, Meriem;Saidi, Hayat;Draiche, Kada;Bousahla, Abdelmoumen Anis;Bourada, Fouad;Tounsi, Abdelouahed
    • Steel and Composite Structures
    • /
    • v.33 no.5
    • /
    • pp.663-679
    • /
    • 2019
  • In this work, a simple four-variable trigonometric shear deformation model with undetermined integral terms to consider the influences of transverse shear deformation is applied for the dynamic analysis of anti-symmetric laminated composite and soft core sandwich plates. Unlike the existing higher order theories, the current one contains only four unknowns. The equations of motion are obtained using the principle of virtual work. The analytical solution is determined by solving the eigenvalue problem. The influences of geometric ratio, modular ratio and fibre angle are critically evaluated for different problems of laminated composite and sandwich plates. The eigenfrequencies obtained using the current theory are verified by comparing the results with those of other theories and with the exact elasticity solution, if any.

Buckling and vibration of laminated composite circular plate on winkler-type foundation

  • Afsharmanesh, B.;Ghaheri, A.;Taheri-Behrooz, F.
    • Steel and Composite Structures
    • /
    • v.17 no.1
    • /
    • pp.1-19
    • /
    • 2014
  • Buckling and vibration characteristics of circular laminated plates under in-plane edge loads and resting on Winkler-type foundation are solved by the Ritz method. Inclusive numerical data are presented for the first three eigen-frequencies as a function of in-plane load for different classical edge conditions. Moreover, the effects of fiber orientation on the natural frequencies and critical buckling loads of laminated angle-ply plates with stacking sequence of $[({\beta}/-{\beta}/{\beta}/-{\beta})]_s$, are studied. Also, selected deformation mode shapes are illustrated. The correctness of results is established using finite element software as well as by comparison with the existing results in the literature.

Multiobjective optimum design of laminated composite annular sector plates

  • Topal, Umut
    • Steel and Composite Structures
    • /
    • v.14 no.2
    • /
    • pp.121-132
    • /
    • 2013
  • This paper deals with multiobjective optimization of symmetrically laminated composite angle-ply annular sector plates subjected to axial uniform pressure load and thermal load. The design objective is the maximization of the weighted sum of the critical buckling load and fundamental frequency. The design variable is the fibre orientations in the layers. The performance index is formulated as the weighted sum of individual objectives in order to obtain the optimum solutions of the design problem. The first-order shear deformation theory is used for the mathematical formulation. Finally, the effects of different weighting factors, annularity, sector angle and boundary conditions on the optimal design are investigated and the results are compared.

An 8-node assumed strain element with explicit integration for isotropic and laminated composite shells

  • Kim, K.D.;Park, T.H.
    • Structural Engineering and Mechanics
    • /
    • v.13 no.4
    • /
    • pp.387-410
    • /
    • 2002
  • Formulation of an 8 nodes assumed strain shell element is presented for the analysis of shells. The stiffness matrix based on the Mindlin-Reissner theory is analytically integrated through the thickness. The element is free of membrane and shear locking behavior by using the assumed strain method such that the element performs very well in modeling of thin shell structures. The material is assumed to be isotropic and laminated composite. The element has six degrees of freedom per node and can model the stiffened plates and shells. A great number of numerical testing carried out for the validation of present 8 node shell element are in good agreement with references.