• 제목/요약/키워드: Laminar conjugate convection

검색결과 13건 처리시간 0.021초

평판의 층류 막응축에서 복합열전달에 대한 근사해 (Approximate Solution for Conjugate Heat Transfer of Laminar Film Condensation on a Flat Plate)

  • 이억수
    • Journal of Advanced Marine Engineering and Technology
    • /
    • 제29권5호
    • /
    • pp.509-518
    • /
    • 2005
  • Liquid film thickness in laminar film condensation for flow over a flat plate generally is so thin that both fluid acceleration and thermal convection within the liquid film can be neglected. An integral solution method is proposed to solve the conjugate problems of laminar film condensation and heat conduction in a solid wall. It is found that approximate solutions of the governing equations involve four physical parameters to describe the conjugate heat transfer problem for laminar film condensation. It is shown that the effects of interfacial shear. mass transfer and local heat transfer are strongly dependent on the thermo-physical properties of the working fluids and the Jacob number.

단일(單一) 긴 수직평판(垂直平板)핀을 가진 수평전도관(水平傳導管)으로 부터의 자연대류(自然對流) (Conjugate Heat Transfer by Natural Convection from a Horizontal Heat Exchanger Tube with a Long Vertical Longitudinal Plate Fin)

  • 배대석;권순석
    • 설비공학논문집
    • /
    • 제1권1호
    • /
    • pp.64-72
    • /
    • 1989
  • Laminar natural convection heat transfer from a horizontal heat exchanger tube with one infinitely long vertical plate fin has been studied by a finite-difference numerical procedure. In predicting convective heat transfer from a circular tube, the thermal boundary condition at solid fluid interface is usually assumed to be isothermal. However, in reality, the thermal boundary condition is not isothermal, and the tube has the thickness and the conductivity. So the temperature at the interface is not known a priori to the calculation. This problem has the conjugate phenomena which occur between the tube conduction and external natural convection, and between the fin conduction and external natural convection. Numerical results are obtained to determine the effects of the conductivity of solid wall and the thickness of tube wall on heat transfer. It is found that the conduction causes significant influence on the natural convection heat transfer at low K and high ${\delta}$.

  • PDF

조정법을 이용한 덕트 내의 이상 층류 유동에 대한 입구 온도분포 역해석 (Inverse Problem of Determining Unknown Inlet Temperature Profile in Two Phase Laminar Flow in a Parallel Plate Duct by Using Regularization Method)

  • 홍윤기;백승욱
    • 대한기계학회논문집B
    • /
    • 제28권9호
    • /
    • pp.1124-1132
    • /
    • 2004
  • The inverse problem of determining unknown inlet temperature in thermally developing, hydrodynamically developed two phase laminar flow in a parallel plate duct is considered. The inlet temperature profile is determined by measuring temperature in the flow field. No prior information is needed for the functional form of the inlet temperature profile. The inverse convection problem is solved by minimizing the objective function with regularization method. The conjugate gradient method as iterative method and the Tikhonov regularization method are employed. The effects of the functional form of inlet temperature, the number of measurement points and the measurement errors are investigated. The accuracy and efficiency of these two methods are compared and discussed.

환기식 3중 집열창의 최적설계를 위한 수치해석 연구 (Numerical analysis for the optimum design of a triple-glazed airflow window)

  • 김홍제;황기영
    • 설비공학논문집
    • /
    • 제9권4호
    • /
    • pp.484-496
    • /
    • 1997
  • The fluid flow and heat transfer characteristics of conjugate forced and natural convection in the triple-glazed airflow window, where the outer air passes through a space contrived between the interior and exterior window panes, were studied numerically by a finite volume method for the elliptic form of the Navier-Stokes equations. The investigation focused on the influence of window geometry, ventilastion rate and solar energy on the temperature, velocity distribution and thermal performance of the airflow window. The comparison between the triple-glazed airflow window and the enclosed triple-glazed window was also made to evaluate the effect of buoyancy upon which the thermal performance of the window depended.

  • PDF

A Boundary Element Solution Approach for the Conjugate Heat Transfer Problem in Thermally Developing Region of a Thick Walled Pipe

  • Choi, Chang-Yong
    • Journal of Mechanical Science and Technology
    • /
    • 제20권12호
    • /
    • pp.2230-2241
    • /
    • 2006
  • This paper presents a sole application of boundary element method to the conjugate heat transfer problem of thermally developing laminar flow in a thick walled pipe when the fluid velocities are fully developed. Due to the coupled mechanism of heat conduction in the solid region and heat convection in the fluid region, two separate solutions in the solid and fluid regions are sought to match the solid-fluid interface continuity condition. In this method, the dual reciprocity boundary element method (DRBEM) with the axial direction marching scheme is used to solve the heat convection problem and the conventional boundary element method (BEM) of axisymmetric model is applied to solve the heat conduction problem. An iterative and numerically stable BEM solution algorithm is presented, which uses the coupled interface conditions explicitly instead of uncoupled conditions. Both the local convective heat transfer coefficient at solid-fluid interface and the local mean fluid temperature are initially guessed and updated as the unknown interface thermal conditions in the iterative solution procedure. Two examples imposing uniform temperature and heat flux boundary conditions are tested in thermally developing region and compared with analytic solutions where available. The benchmark test results are shown to be in good agreement with the analytic solutions for both examples with different boundary conditions.

The Coupling of Conduction with Free Convection Flow Along a Vertical Flat Plate in Presence of Heat Generation

  • Taher, M.A.;Lee, Yeon-Won
    • Journal of Advanced Marine Engineering and Technology
    • /
    • 제31권7호
    • /
    • pp.833-841
    • /
    • 2007
  • The aim of this paper is to analyze the conjugate problems of heat conduction in solid walls coupled with laminar free convection flow adjacent to a vertical flat plate under boundary layer approximation. Using the similarity transformations the governing boundary layer equations for momentum and energy are reduced to a system of partial differential equations and then solved numerically using Finite Difference Method(FDM) known as the Keller-box scheme. Computed solutions to the governing equations are obtained for a wide range of non-dimensional parameters that are present in this problem, namely the coupling parameter P. the Prandtl number Pr and the heat generation parameter Q. The variations of the local heat transfer rate as well as the interface temperature and the friction along the plate and typical velocity and temperature profiles in the boundary layer are shown graphically. Numerical solutions have been consider for the Prandtl number Pr=0.70

대류와 전도 열전달을 이용한 전자부품의 냉각특성 수치해석 (Numerical Analysis on Cooling Characteristics of Electronic Components Using Convection and Conduction Heat Transfer)

  • 손영석;신지영
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2001년도 춘계학술대회논문집D
    • /
    • pp.390-395
    • /
    • 2001
  • Cooling characteristics using convection and conduction heat transfer in a parallel channel with extruding heat sources are studied numerically. A two-dimensional model has been developed for numerical prediction of transient, compressible, viscous, laminar flow, and conjugate heat transfer between parallel plates with uniform block heat sources. The finite volume method is used to solve this problem. The considered assembly consists of two channels formed by two covers and one PCB which has three uniform heat source blocks. Five different cooling methods are considered to find efficient cooling method in a given geometry and heat source. The velocity and temperature fields, local temperature distribution along surface of blocks, and the maximum temperature in each block are obtained.

  • PDF

원관내 부채꼴 휜 주위에서의 열전달 최적화 (Heat Transfer Optimization in a Tube with Circular-Sectored Fins)

  • 유재욱;김성진;현재민
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2000년도 춘계학술대회논문집B
    • /
    • pp.57-64
    • /
    • 2000
  • The present work investigates the heat transfer characteristics for laminar fully developed forced convection in an internally finned tube with axially uniform heat flux and peripherally uniform temperature through analytical models of convection in a porous medium. Using the Brinkman-extended Darcy flow model and the two equation model fur heat transfer, analytical solutions fur fluid flow and heat transfer are obtained and compared with the exact solution for fluid flow and the numerical solutions for conjugate heat transfer to validate the porous medium approach. Using the analytical solutions, parameters of engineering importance are identified and their effects on fluid flow and heat transfer are studied. Also, the expression fur total thermal resistance is derived from the analytical solutions and minimized in order to optimize the thermal performance of the internally finned tubes.

  • PDF

돌출된 열원이 있는 채널에서 대류와 전도열전달을 이용한 냉각특성 (Cooling Characteristics of a Parallel Channel with Protruding Heat Sources Using Convection and Conduction Heat Transfer)

  • 손영석;신지영
    • 설비공학논문집
    • /
    • 제14권11호
    • /
    • pp.923-930
    • /
    • 2002
  • Cooling characteristics of a parallel channel with protruding heat sources using convection and conduction heat transfer are studied numerically. A two-dimensional model has been developed for numerical prediction of transient, compressible, viscous, laminar flow, and conjugate heat transfer between parallel plates with uniform block heat sources. The finite volume method is used to solve the problem. The assembly consists of two channels formed by two covers and one printed circuit board which has three uniform heat source blocks. Six different cooling methods are considered to find out the most efficient cooling method in a given geometry and heat sources. The velocity and temperature fields of cooling medium, the temperature distribution along the block surface, and the maximum temperature in each block are obtained. The results are compared to examine the cooling characteristics of the different cooling methods.

2개(個)의 수직(垂直) 평판(平板)핀을 가진 전도관(傳導管)으로 부터의 자연대류(自然對流) 열전달(熱傳達) (Natural Convection Heat Transfer from a Conducting Tube with Two Vertical Axial Fins)

  • 정한식;이철재;권순석
    • 설비공학논문집
    • /
    • 제3권4호
    • /
    • pp.222-230
    • /
    • 1991
  • Conjugate heat transfer by steady laminar natural convection from a conducting tube with two vertical axial fins has been studied by a finite difference numerical procedure under basic conditions; $Ra=10_6$, Pr = 5 and $L_F=0.15$. The maximum local tube Nusselt number appears at ${\theta}=140^{\circ}$ for $L_F=0.06$, at ${\theta}=130^{\circ}$ for $L_F=0.30$ and at ${\theta}=120^{\circ}$ for $L_F=0.30$, $L_F=0.06$, respectively. The maximum mean Nusselt number shows at $L_F=0.18$ for the downward fin and at $L_F=0.12$ for the upward fin. Therefore the optimized fin length is $L_F{\approx}0.15$ under these conditions. At $L_F=0.15$, the mean Nusselt number by increasing Rayleigh number is remarkably increased for downward fin and then is slowly increased except for downward fin, it by increasing Prandtl number is apparently increased at $Pr{\leq}2$, and slightly increased at Pr>2.

  • PDF