• 제목/요약/키워드: Laminar Flow Reactor

검색결과 28건 처리시간 0.02초

저열량탄의 휘발분과 산소농도가 Tar와 Soot의 발생률에 미치는 영향 (Effect of volatile matter and oxygen concentration on tar and soot yield depending on low calorific coal in Laminar Flow Reactor)

  • 정태용;김진호;이병화;송주헌;전충환
    • 한국연소학회:학술대회논문집
    • /
    • 한국연소학회 2012년도 제44회 KOSCO SYMPOSIUM 초록집
    • /
    • pp.209-212
    • /
    • 2012
  • This study was performed to analyze coal flames and measure tar and soot yields and structures of chars for two coals depending on the volatile content by the LFR(Laminar Flow Reactor) which can be applied to a variety of coal researches. The results show that volatile contents and oxygen concentration have significant influence on length and width of the soot cloud and it also indicate that the length and width of the cloud in condition of combustion decrease than those of pyrolysis atmosphere. Until the sampling height reach at 50 mm, the tar and soot yields of Berau (Sub-bituminous) coal contained relatively lots of volatile matters are less than those of Glencore A.P. (Bituminous) coal. On the other hand, tar and soot yields of Berau coal are higher than those of Glencore A.P. coal by reacted residual volatile matter. In addition, the images of samples obtained from the particle separation system of the sampling probe support for above results with the yields, and the pore development of char surface by devolatilization.

  • PDF

미분탄 연소의 점화 특성에 관한 연구 (Ignition behaviour of pulverized coal particle during coal combustion)

  • 이동방;김량균;송주헌;전충환
    • 한국연소학회:학술대회논문집
    • /
    • 한국연소학회 2012년도 제44회 KOSCO SYMPOSIUM 초록집
    • /
    • pp.213-215
    • /
    • 2012
  • As one of the primary fuel sources, oxy-fuel combustion of coal is actively being investigated because of the climate changing problem such like the emission of green house gases. In this paper research about the pulverized coal technology, which is widely used in both power-generating and iron-making processes was studied to invesgate the ignition behaviour of pulverized coal particles during coal combustion as changing the ambient oxygen concentration of the particle. The ignition phenomenon of the coal particles fed into a laminar flow reactor was imaged with a Integrated charged-coupled device (ICCD) camera. The ignition points were determined throught the analysis of the images, and then the ignition delay times were able to be calculated. The experiment results show that a lower oxygen concentration increases the ignition delay time.

  • PDF

회전식 화학증착 장치 내부의 유동해석을 통한 최적 유량 평가 (COMPUTATIONAL ASSESSEMENT OF OPTIMAL FLOW RATE FOR STABLE FLOW IN A VERTICAL ROTATING DISk CHEMICAL VAPOR DEPOSITION REACTOR)

  • 곽호상
    • 한국전산유체공학회지
    • /
    • 제17권1호
    • /
    • pp.86-93
    • /
    • 2012
  • A numerical investigation is conducted to search for the optimal flow rate for a rotating-disk chemical vapor decomposition reactor operating at a high temperature and a low pressure. The flow of a gas mixture supplied into the reactor is modeled by a laminar flow of an ideal gas obeying the kinetic theory. The axisymmetric two-dimensional flow in the reactor is simulated by employing a CFD package FLUENT. With operating pressure and temperature fixed, numerical computations are performed by varying rotation rate and flow rate. Examination of the structures of flow and thermal fields leads to a flow regime diagram illustrating that there are a stable plug-like flow regime and a few unfavorable flow regimes induced by mass unbalance or buoyancy. The criterion for sustaining a plug-like flow regime is discussed based on a theoretical scaling argument. Interpretation of the flow regime map suggests that a favorable flow is attainable with a minimum flow rate at the smallest rotation rate guaranteeing the dominance of rotation effects over buoyancy.

Power upgrading of WWR-S research reactor using plate-type fuel elements part I: Steady-state thermal-hydraulic analysis (forced convection cooling mode)

  • Alyan, Adel;El-Koliel, Moustafa S.
    • Nuclear Engineering and Technology
    • /
    • 제52권7호
    • /
    • pp.1417-1428
    • /
    • 2020
  • The design of a nuclear reactor core requires basic thermal-hydraulic information concerning the heat transfer regime at which onset of nucleate boiling (ONB) will occur, the pressure drop and flow rate through the reactor core, the temperature and power distributions in the reactor core, the departure from nucleate boiling (DNB), the condition for onset of flow instability (OFI), in addition to, the critical velocity beyond which the fuel elements will collapse. These values depend on coolant velocity, fuel element geometry, inlet temperature, flow direction and water column above the top of the reactor core. Enough safety margins to ONB, DNB and OFI must-emphasized. A heat transfer package is used for calculating convection heat transfer coefficient in single phase turbulent, transition and laminar regimes. The main objective of this paper is to study the possibility of power upgrading of WWR-S research reactor from 2 to 10 MWth. This study presents a one-dimensional mathematical model (axial direction) for steady-state thermal-hydraulic design and analysis of the upgraded WWR-S reactor in which two types of plate fuel elements are employed. FOR-CONV computer program is developed for the needs of the power upgrading of WWR-S reactor up to 10 MWth.

Journal of the Environmental Sciences A Study on the Operating Conditions to Eliminate Feedpipe Backmixing for Fast Competitive Reactions

  • Jang, Jeong-Gook;Jo, Myung-Chan
    • 한국환경과학회지
    • /
    • 제20권8호
    • /
    • pp.929-942
    • /
    • 2011
  • A novel conductivity technique was developed to detect penetration depth of the vessel fluid into the feedpipe. For a given reactor geometry, critical agitator speeds were experimentally determined at the onset of feedpipe backmixing using Rushton 6 bladed disk turbine (6BD) and high efficiency axial flow type 3 bladed (HE-3) impellers. The ratio of the feedpipe velocity to the critical agitator speed ($v_f/v_t$) was constant for either laminar or turbulent feedpipe flow regimes. Compared to the results of fast competitive reaction, feedpipe backmixing had to penetrate at least one feedpipe diameter into the feedpipe to significantly influence the yield of the side product. However, higher $v_f/v_t$ than that for L/d = 0 (position at the feedpipe end) of the conductivity technique is recommended to completely eliminate feedpipe backmixing in conservative design criteria. The conductivity technique was successful in all feedpipe flow conditions of laminar, transitional and turbulent flow regimes.

CPD 모델을 이용한 국내수입탄 성상에 따른 탈휘발 특성에 관한 실험 및 해석적 연구 (An Experimental and Numerical Study on the Characteristics of Devolatilization Process for Coals Utilized in Korea Using CPD Model)

  • 김량균;이병화;전충환;송주헌;장영준
    • 대한기계학회논문집B
    • /
    • 제33권8호
    • /
    • pp.613-621
    • /
    • 2009
  • Coal is the energy resource which is important with the new remarking energy resource. Coal combustion produces more NOx per unit of energy than any other major combustion technology. Pollutant emission associated with coal combustion will have a huge impact on the environment. Coal conversion has three processes which are drying, coal devolatilization and char oxidation. Coal devolatilization process is important because it has been shown that HCN which is converted from volatile N contributes 60 to 80% of the total NOx produced. This paper addresses mass release behavior of char, tar, gas and HCN in an experiment of Laminar Flow Reactor with two coals such as Roto middle coal (Sub-bituminous) and Anglo coal (Bituminous). The experiment is compared with the data predicted by CPD model for mass release of HCN about Roto south, Indominco, Weris creek and China orch coals. The results show that HCN increases as a function of decreasing the ratio of fixed carbon(FC)/ volatile matter(VM of the coals contain.)

회전원판형 CVD 장치의 유동 재순환을 억제하는 출구부 형상 설계를 위한 전산해석 (A COMPUTATIONAL ANALYSIS FOR OUTLET SHAPE DESIGN TO SUPPRESS FLOW RECIRCULATION IN A ROTATING-DISK CVD REACTOR)

  • 박장진;김경진;곽호상
    • 한국전산유체공학회지
    • /
    • 제18권4호
    • /
    • pp.74-81
    • /
    • 2013
  • A numerical design analysis is conducted to search for an optimal shape of outlet in a rotating-disk CVD reactor. The goal is to suppress flow recirculation that has been found in a reactor having a sudden expansion of flow passage outside of the rotating disk. In order to streamline gas flow, the sidewall at which the flow in the Ekman layer is impinged, is tilted. The axisymmetric laminar flow and heat transfer in the reactor are simulated using the incompressible ideal gas model. For the conventional vertical sidewall, the flow recirculation forming in the corner region could be expanded into the interior to distort the upstream flow. The numerical results show that this unfavorable phenomenon inducing back flow could be dramatically suppressed by tilting the sidewall at a certain range of angle. The assessment of deviation in deposition rate based on the characteristic isotherm illustrates that the sidewall tilting may expand the domain of stable plug-like flow regime toward higher pressure. A physical interpretation is attempted to explain the mechanism to suppress flow recirculation.

전산유체역학을 활용한 폐플라스틱열분해 반응기의 기체분산판에 대한 유동해석 (Effects of Thermal Dispersion Damage on the Pyrolysis and Reactor Relarionship Using Comutational Fluids Dynamics)

  • 한종일;박성수;김인재;나광호
    • 신재생에너지
    • /
    • 제19권4호
    • /
    • pp.53-60
    • /
    • 2023
  • The Computational Fluid Dynamics (CFD) model is a method of studying the flow phenomenon of fluid using a computer and finding partial differential equations that dominate processes such as heat dispersion through numerical analysis. Through CFD, a lot of information about flow disorders such as speed, pressure, density, and concentration can be obtained, and it is used in various fields from energy and aircraft design to weather prediction and environmental modeling. The simulation used for fluid analysis in this study utilized Gexcon's (FLACS) CODE, such as Norway, through overseas journals, for the accuracy of the analysis results through many experiments. It was analyzed that a technology for treating two or more catalysts with physical properties under low-temperature atmospheric pressure conditions could not be found in the prior art. Therefore, it would be desirable to establish a continuous plan by reinforcing data that can prove the effectiveness of producing efficient synthetic oil (renewable oil) through the application that pyrolysis under low-temperature and atmospheric pressure conditions.

Ignition Behavior of Single Coal Particles From Different Coal Ranks at High Heating Rate Condition

  • Lee, Dongfang;Kim, Ryang Gyoon;Jeon, Chung-Hwan
    • 한국연소학회:학술대회논문집
    • /
    • 한국연소학회 2012년도 제45회 KOSCO SYMPOSIUM 초록집
    • /
    • pp.111-114
    • /
    • 2012
  • The ignition behavior of single coal particles of five kindes of coal with different ranks (low volatile bituminous, low volatile sub-bituminous, high volatile bituminous, lignite) with particle size of $150-200{\mu}m$ was investigated at high heating rate condition. Particles were injected into a laminar flow reactor and the ignition behavior was observed with high speed cinematography. Sub-bituminous were observed to ignite homogeneously; however, low volatile bituminous coal and lignite undergo fragmentation prior to igntion. The observation was analyzed with previous work.

  • PDF