• 제목/요약/키워드: Laminar Burning Velocity

검색결과 73건 처리시간 0.023초

메탄-산소 층류화염전파속도 측정 (Determination of Laminar Burning Velocity in Premixed Oxy-Methane Flames)

  • 오정석;노동순;이은경;홍성국
    • 한국추진공학회:학술대회논문집
    • /
    • 한국추진공학회 2011년도 제37회 추계학술대회논문집
    • /
    • pp.258-262
    • /
    • 2011
  • 실험용 분젠 연소기를 사용하여 예혼합된 메탄-산소 층류화염전파속도를 연구하였다. 이를 위해 $CH^*$ 자발광 측정기법과 슐리렌 사진술이 사용되었다. 실험결과는 CHEMKIN 3.7을 이용한 수치해석 결과와 비교하였다. 층류화염전파속도를 측정하기 위하여 층류여역 내에서 전체 당량비는 0.5에서 2.0까지 조절하였다. 동축 화염에서 화염전파속도는 각도측정법을 사용하였으며 슐리렌 사진에서는 3.1 m/s로 $CH^*$ 자발광 사진에서는 2.9 m/s로 측정되었다.

  • PDF

Experimental Study on Turbulent Burning Velocities of Two-Component Fuel Mixtures of Methane, Propane and Hydrogen

  • Kido, Hiroyuki;Nakashima, Kenshiro;Nakahara, Masaya;Hashimoto, Jun
    • 한국연소학회지
    • /
    • 제6권2호
    • /
    • pp.1-7
    • /
    • 2001
  • In order to elucidate the turbulent burning velocity of the two-component fuel mixtures, the lean and rich two-component fuel mixtures, where methane, propane and hydrogen were used as fuels, were prepared keeping the laminar burning velocity nearly the same value. Clear difference in the measured turbulent burning velocity at the same turbulence intensity can be seen among the two-component fuel mixtures with different addition rate of fuel, even under nearly the same laminar burning velocity. The burning velocities of lean mixtures change almost monotonously as changing addition rate, those of rich mixtures, however, do not show such a monotony. These phenomena can be explained qualitatively from the local burning velocities, estimated by considering the preferential diffusion effect for each fuel component. In addition, a prediction expression of turbulent burning velocity proposed for the one-component fuel mixtures can be applied to the two-component fuel mixtures by using the estimated local burning velocity of each fuel mixture.

  • PDF

Laminar Burning Velocities of Atmospheric Coal Air Mixtures

  • Park, Ho Young;Park, Yoon Hwa
    • KEPCO Journal on Electric Power and Energy
    • /
    • 제2권1호
    • /
    • pp.89-96
    • /
    • 2016
  • The mechanism for laminar dust flame propagation can only be elucidated from a comprehensive mathematical model which incorporates conduction and radiation, as well as the chemical kinetics of particle devolatilization and gas phase and char reaction. The mathematical model for a flat, laminar, premixed coal-air flame is applied to the atmospheric coal-air mixtures studied by Smoot and co-workers, and comparisons are made with their measurements and predictions. Here the principal parameter for comparison is the laminar burning velocity. The studies of Smoot and co-workers are first reviewed and compared with those predicted by the present model. The effects of inlet temperature and devolatilization rate constants on the burning velocities are studied with the present model, and compared with their measurements and predictions. Their measured burning velocities are approximately predicted with the present model at relatively high coal concentrations, with a somewhat increased inlet temperature. From the comparisons, their model might over-estimate particle temperature and rates of devolatilization. This would enable coal-air mixtures to be burned without any form of preheat and would tend to increase their computed values of burning velocity.

메탄-공기 예혼합기의 층류 화염속도 측정 및 계산 (Measurement and Calculation of Laminar Burning velocity on Methane-Air Premixture)

  • 권순익;김상진
    • 한국산업융합학회 논문집
    • /
    • 제9권1호
    • /
    • pp.21-27
    • /
    • 2006
  • The laminar burning velocity was measured using a spherical combustion bomb with central ignition. Mixtures with equivalence ratio between 0.6 and 1.2, were tested. The computation was carried out for the burning velocity using premix code of Chemkin program under the unburned gas pressure of 0.5bar-30bar and temperature of 300K-700K at ${\Phi}1.0$. The results showed little difference between these two methods. The burning velocity was decreased by increasing the pressure and increased by increasing the temperature. The burning velocity was predicted by using the following equations $$S_L(m/s) = S_{st}(T/300)^{1.85}(P)^{-0.45}$$ $$(0.5bar{\leq}P{\leq}30bar,\;300K{\leq}T{\leq}700K)$$).

  • PDF

각도법과 동심형 확장 채널 연소기를 이용한 연소속도 측정 및 화염 발광 특성에 관한 연구 (A Study on the Laminar Burning Velocity Using an Angle Method and Annular Diverging Channel Combustor and Characteristics Of Chemiluminescence)

  • 윤승호;이기만
    • 한국연소학회:학술대회논문집
    • /
    • 한국연소학회 2014년도 제49회 KOSCO SYMPOSIUM 초록집
    • /
    • pp.91-94
    • /
    • 2014
  • In this study, the laminar burning velocities of SNG fuel were studied using both experimental measurements and kinetic simulations. They were measured using the angle method of Bunsen flame configuration and the annular diverging channel combustor. And they were also numerically calculated by CHEMKIN Package with GRI 3.0 mechanisms. Spectrometer was used for characteristics of flame chemiluminescence of SNG fuels. From results of this work, first, we found that according to adding $H_2$ contents in the fuels the laminar burning velocities of SNG fuels were increased. And second, we also discovered existence of OH*, CH*, $C_2*$, HCO*, $CH_2*$ radicals and their correlation.

  • PDF

구형 전파화염에서 SNG 연료의 층류연소속도와 마크스타인 길이 측정에 관한 연구 (A Study on Measurement of Laminar Burning Velocity and Markstein Length of SNG Fuel in Spherical Propagation Flame)

  • 송준호;이기만
    • 한국수소및신에너지학회논문집
    • /
    • 제30권1호
    • /
    • pp.67-75
    • /
    • 2019
  • An experimental study was conducted to measure laminar burning velocity and Markstein length of SNG fuel with 3% of hydrogen contents from spherical propagating flames at normal and elevated initial pressure. These results were compared with numerical calculations by Premix code with GRI-mech 3.0, USC II and UC San Diego to provide suitable mechanism for SNG fuel. As a result of this work, it was found that the burning velocities and Markstein lengths of SNG fuel decrease with increase of initial pressure regardless of equivalence ratio. In addition, numerical calculations with GRI-mech 3.0 were coincided with experimental results.

메탄-공기 예혼합기에서의 층류 화염속도 및 화염두께 예측 (Prediction of Laminar Burning Velocity and Flame Thickness in Methane-Air Pre-Mixture)

  • 권순익;보웬 필립
    • 대한기계학회논문집B
    • /
    • 제27권9호
    • /
    • pp.1201-1208
    • /
    • 2003
  • The thickness of flame and preheat zone from burning velocity which was computed by using Premix code of Chemkin program for methane-air mixture. Also the thickness was evaluated from temperature profile which is also obtained from Premix code for the equivalence ratio of 0.5 to 1.6. The computations were carried out for the laminar flame thickness and burning velocity under the unburned gas temperature 0.5bat-30bar and temperature of 300K-700K at ${\Phi}=l.0$. Comparison of the results showed no difference between these two methods. The flame thickness was decreased by increasing the pressure and temperature, but, the affect of pressure is more significant than the effect of temperature on the flame thickness. The thickness of preheat zone was about 66.5% of the flame thickness, and flame thickness and burning velocity were also predicted by using empirical equation.

흡열분해 모사연료의 층류화염 전파속도 측정 (Measurement of Laminar Burning Velocity of Endothermic Fuel Surrogates)

  • 진유인;이형주;한정식
    • 한국추진공학회지
    • /
    • 제23권3호
    • /
    • pp.67-75
    • /
    • 2019
  • 본 연구에서는 항공유가 극초음속 비행체용 능동냉각시스템의 냉원으로 사용되면서 흡열분해된 후의 연소특성을 확인하는 연구의 일환으로, 흡열분해 모사연료에 대한 층류화염 전파속도를 측정하였다. 흡열분해 모사연료 2종(SF-1, 2)을 제조하고 분젠버너 시험장치를 제작하여 층류화염속도를 측정한 결과 기준연료(RF)와 비교해 보면 전체적으로 높은 당량비에서 화염전파속도가 빠르게 나타나고 있으며, 특히 SF-1이 SF-2 및 RF보다 훨씬 높은 당량비에서 최대 속도를 가짐을 확인하였다.

부족성분 확산계수의 영향을 고려한 난류연소속도의 스펙트럼 모델 (Spectral Model of Turbulent Burning Velocity Taking Account of the Diffusivity of Deficient Reactant)

  • 김준효
    • 수산해양기술연구
    • /
    • 제33권3호
    • /
    • pp.218-225
    • /
    • 1997
  • The formerly proposed spectral model of turbulent burning velocity is refined for nonstoichiometric hydrocarbon mixtures. Refinements are made in regard to the following two points : (1) an effect of the diffusivity of deficient reactant on the turbulent burning velocity and (2) consideration of increasing laminar name thickness with a decrease in the laminar burning velocity A comparison between the predicted turbulent velocities and the measured ones is made. The predictions by the refined spectral model agree quantatively well with the experimental results in the regime of practical equivalence ratio, but not in the high and low equivalence ratio regime.

  • PDF

스월유동장에 있어서 연소속도에 미치는 난류특성의 영향에 관한 연구 (A study on the influence of turbulence characteristics on burning speed in swirl flow field)

  • 이상준;이종태;이성열
    • 대한기계학회논문집B
    • /
    • 제20권1호
    • /
    • pp.244-254
    • /
    • 1996
  • Flow velocity was measured by, use of hot wire anemometer. Turbulence intensity was in proportion to mean flow velocity regardless of swirl velocity. And integral length scale has proportional relation with swirl velocity regardless of measurement position. Turbulent burning speed during flame propagation which was determined by flame photograph and gas pressure of combustion chamber was increased with the lapse of time from spark and was decreased a little at later combustion period. Because of combustion promotion effect, turbulent burning speed was increased according to increase of turbulence intensity. Burning speed ratio i.e. ratio of turbulent burning speed ($S_BT$) to laminar burning speed ($S_BL$) was found out by use of turbulence intensity u' and integral length scale $l_x$ , $\delta_L$ is width of preheat zone in laminar flame.