• Title/Summary/Keyword: Lake dynamics

Search Result 86, Processing Time 0.027 seconds

The Summer Phytoplankton Community Structure in Lake Imha (하계 임하호에서 식물플랑크톤 군집의 구조)

  • 박정원;신종학;이갑숙
    • Korean Journal of Environmental Biology
    • /
    • v.17 no.1
    • /
    • pp.95-115
    • /
    • 1999
  • The dynamics of phytoplankton community in Lake Imha and its tributaries was investigated at nineteen stations in August and September 1996. A total of 171 taxa [171 species (including 1 forms and 27 varieties),66 genus, 25 families, 6 suborders, 13 orders and 6 class] were identified. The standing crops of phytoplankton ranged from $47.35{\times}10^3 to 184.65{\times}10^3 individuals/ml in surface layer, 1.08{\times}10^3~54.33{\times}10^3 individuals/ml in middle layer and 0.69{\times}10^3~115.85{\times}10^3individuals/ml$ in low layer. Dominant species determined by standing crops of each species were Oocystis lacustris, Elakatothrix gelatinosa, Aulacoseira ambigua, and Synedra acus, however, the most species dominated from 1992 to 1994 disappeared.

  • PDF

Dynamics of Dissolved Organic Matter in eutrophic shallow Lake Kasumigaura, Japan. (수심이 얕은 부영양호에서 용존유기물의 거동)

  • 박제철
    • Journal of environmental and Sanitary engineering
    • /
    • v.12 no.3
    • /
    • pp.31-39
    • /
    • 1997
  • The seasonal and spatial changes in dissolved organic carbon(DOC) in Lake Kasumigaura, a shallow and eutrophic lake, were analyzed from October 1992 to October 1995. The proportion of T-DOC was classified by labile(L-DOC) and refractory DOC(R-DOC) on the basis of long-term incubation, fractionated the molecular weight of T-DOC by ultrafiltration. The porewater DOC were measured at sedimental surface of the central basin in order to evaluate the DOC released from the sediment. The proportion of L-DOC and R-DOC were accounted for about 15% and 85% of T-DOC in the central basin, respectively. The molecular weight(MW) distribution occupied some 60% of the low and medium MW. The horizontal variation of T-DOC concentrations trended to higher in the central basin than in the inlet of influent rivers, because of contribution by autochthonous organic carbon loading. The seasonal variation of T-DOC showed to higher summer than winter in the inlet of influent, but at the central basin it fluctuated little seasonally. During the high increase of porewater DOC in 1994 evaluated the high release possibility from the sediment surface (10cm). The present study suggests that autochthonous organic carbon loading must be controlled for improving the water quality of the eutrophic lakes.

  • PDF

Changes in Phytoplankton Communities and Environmental Factors in Saemangeum Artificial Lake, South Korea between 2006 and 2009 (2006년~2009년 새만금호에서 식물플랑크톤 군집과 환경요인의 변화)

  • Choi, Chung Hyun;Jung, Seung Won;Yun, Suk Min;Kim, Sung Hyun;Park, Jong Gyu
    • Korean Journal of Environmental Biology
    • /
    • v.31 no.3
    • /
    • pp.213-224
    • /
    • 2013
  • Between May 2006 and November 2009, we investigated the relationship between fluctuations in environmental factors and phytoplankton communities in Saemangeum Artificial Lake, South Korea. Nutrient concentrations in the lake increased because of the inflow of water from Mankyung and Dongjin Rivers during the summer rainy season; in particular, high concentrations were detected at an inner zone close to the estuaries. During the summer rainy season, salinity at the inner zone reduced more rapidly than that at the other zones, and it was similar to the changes in nutrient concentrations. Variations in phytoplankton communities were caused by fluctuations in environmental factors: the abundance of phytoplankton at the inner zone was higher than that at the other zones. Diatoms were the dominant species in the phytoplankton communities. A small centric diatom, Skeletonema costatum like species, was predominant, with a mean abundance of 19.5% in Saemangeum lake. Because of accelerated eutrophication in the lake, phytoplankton abundance increased continuously and the total number of species present in the community decreased. In particular, some dinoflagellates could intermittently cause red tides during low temperature and salinity conditions (at the inner zone). In 2006~2007, a red tide-forming dinoflagellate, Prorocentrum minimum, was the predominant species, while Heterocapsa triquetra, Karlodinium veneficum, and Heterocapsa rotundata were the newly recorded species in late 2008 to early 2009. Therefore, the dynamics of phytoplankton communities under the perennially eutrophic conditions in Saemangeum lake appear to be primarily affected by changes in water temperature and salinity. In particular, the growth of harmful algae may have been accelerated by the low salinity and temperature conditions during the spring season at the inner zone.

Dinophyceae Fluctuations in Two Alpine Lakes of Contrasting Size During a 10-Year Fortnightly Survey

  • Trevisan, R.;Pertile, R.;Bronamonte, V.;Dazzo, F.B.;Squartini, A.
    • Journal of Microbiology and Biotechnology
    • /
    • v.22 no.6
    • /
    • pp.754-762
    • /
    • 2012
  • Colbricon Superiore and Inferiore are two small adjacent high-mountain lakes located in the Paneveggio Natural Park (Italy) that offer the rare opportunity to study two iso-ecologic water environments differing only by area and volume in a ratio of 2:1 and 3:1, respectively. We took advantage of this setting to investigate phytoplankton dynamics, compare variability and productivity differences between the two basins, and assess size-dependent issues. The phytoplankton group of the Dinophyceae was chosen as the indicator organisms of ecological perturbation owing to their high sensitivity to environmental variations, as well as their acknowledged nature of versatile proxy to report global climatic changes. The study was conducted for over 10 years with fortnightly samplings. Results indicated that (a) the Dinophyceae communities in the smaller lake were significantly more resistant to changes exerted by the fluctuation of lakewater transparency and pH; and (b) the smaller lake sustained a consistently higher production with an average Dinophyceae density 1.73 fold higher than that of the larger lake. The coefficients of variation show that the chemical parameters in the smaller lake display higher time-related fluctuation while being spatially homogeneous and that such conditions correlate with a higher stability of the Dinophyceae assemblage. The use of this setting is also proposed as a model to test relationships between ecosystem production and physical stability.

Phytoplankton and Environmental Factors in Lake Hwaong (화옹호의 식물플랑크톤과 환경요인)

  • Chung, Mi-Hee;Kim, Ho-Sub;Choi, Chung-Il;Hwang, Soon-Jin
    • Korean Journal of Ecology and Environment
    • /
    • v.37 no.2 s.107
    • /
    • pp.193-204
    • /
    • 2004
  • This study was conducted to evaluate both temporal and spatial dynamics of phytoplankton community and environmental parameters in a newly made reclaimed esturine lake (L. Hwaong). Monthly sampling was conducted at 4 sites covering the longest transect of longitudinal gradient of the lake from June to November, 2002. Total 5 classes 8 orders 26 families 83 genus 192 species were identified at all study sites during the study period. Phytoplankton total cell density ranged 24${\sim}$ 1,882 cells $mL^{-1}$ and highly varied both temporally and spatially. Total cell density was significantly related with salinity, pH, BOD, COD, SS, TN and TP concentration. Diatom density also was significantly correlated with salinity, SS, BOD, COD and TN concentration, Although there was spatial difference, a longtudinal gradient appeared in phytoplankton cell density, Chl-a, TN and TP concentration from the mouth of river in June and August. In conclusion, phytoplakton community structure was dominated by diatoms (Bacillariophyceae), and appeared to be largely influenced by salinity, precipitation, and nutrients during the summer and the fall.

Relationship between a Dense Bloom of Cyanobacterium Anabaena spp. and Rainfalls in the North Han River System of South Korea (북한강 수계의 남조 Anabaena 대발생과 강우의 관계)

  • Byun, Jeong-Hwan;Cho, In-Hwan;Hwang, Soon-Jin;Park, Myung-Hwan;Byeon, Myeong-Seop;Kim, Baik-Ho
    • Korean Journal of Ecology and Environment
    • /
    • v.47 no.2
    • /
    • pp.116-126
    • /
    • 2014
  • To evaluate the relationship between dynamics of Cyanobacterial bloom and rainfalls, a monthly monitoring of water quality and phytoplankton from the three serial lakes (Lake Ui-am, Lake Chung-pyeong and Lake Pal-dang) in the North Han River System were examined 12 times from May 2012 to March 2013. A dense bloom of cyanobacterium Anabaena spp., was occurred over three lakes in the summer season of 2012. In Lake Ui-am, the Anabaena population appeared in June, showed a peak in July (43,850 cells $mL^{-1}$) and disappeared in November 2012. In Lake Chung-pyeong and Lake Pal-dang, Anabaena population commonly appeared in July, showed the peaks (31,648 cells $mL^{-1}$ and 7,136 cells $mL^{-1}$, respectively) in August, and entirely disappeared in September 2012. Over the three lakes, the phytoplankton community was commonly dominated by diatoms before Monsoon, cyanobacteria during Monsoon, and diatoms after Monsoon, respectively, indicating a Monsoon-dependent succession. A correlation analysis revealed that dynamics of Anabaena population was strongly related with rainfall (r=0.72, r=0.83, r=0.88, P<0.01 for three lakes), and partly with nutrients, inflow and outflow of lakes. Therefore, this study indicates that the outbreak and destruction of Anabaena bloom in North Han River System between 2012 and 2013 was impacted by rainfalls. However, a high density of cyanobacteria in Lake Ui-am remained after Monsoon, and thus, may paroduce bad-order and toxins from phytoplankton.

Dynamics and Control Methods of Cyanotoxins in Aquatic Ecosystem

  • Park, Ho-Dong;Han, Jisun;Jeon, Bong-seok
    • Korean Journal of Ecology and Environment
    • /
    • v.49 no.2
    • /
    • pp.67-79
    • /
    • 2016
  • Cyanotoxins in aquatic ecosystems have been investigated by many researchers worldwide. Cyanotoxins can be classified according to toxicity as neurotoxins (anatoxin-a, anatoxin-a(s), saxitoxins) or hepatotoxins (microcystins, nodularin, cylindrospermopsin). Microcystins are generally present within cyanobacterial cells and are released by damage to the cell membrane. Cyanotoxins have been reported to cause adverse effects and to accumulate in aquatic organisms in lakes, rivers and oceans. Possible pathways of microcystins in Lake Suwa, Japan, have been investigated from five perspectives: production, adsorption, physiochemical decomposition, bioaccumulation and biodegradation. In this study, temporal variability in microcystins in Lake Suwa were investigated over 25 years (1991~2015). In nature, microcystins are removed by biodegradation of microorganisms and/or feeding of predators. However, during water treatment, the use of copper sulfate to remove algal cells causes extraction of a mess of microcystins. Cyanotoxins are removed by physical, chemical and biological methods, and the reduction of nutrients inflow is a basic method to prevent cyanobacterial bloom formation. However, this method is not effective for eutrophic lakes because nutrients are already present. The presence of a cyanotoxins can be a potential threat and therefore must be considered during water treatment. A complete understanding of the mechanism of cyanotoxins degradation in the ecosystem requires more intensive study, including a quantitative enumeration of cyanotoxin degrading microbes. This should be done in conjunction with an investigation of the microbial ecological mechanism of cyanobacteria degradation.

The Dynamics of Protein Decomposition in Lakes of Different Trophic Status - Reflections on the Assessment of the Real Proteolytic Activity In Situ

  • Siuda, Waldemar;Kiersztyn, Bartosz;Chrost, Ryszard J.
    • Journal of Microbiology and Biotechnology
    • /
    • v.17 no.6
    • /
    • pp.897-904
    • /
    • 2007
  • The aim of this paper is to discuss the methodology of our investigation of the dynamics of protein degradation and the total in situ protealytic activity in meso/eutrophic, eutrophic, and hypereutrophic freshwater environments. Analysis of the kinetics and rates of enzymatic release of amino acids in water samples preserved with sodium azide allows determination of the concentrations of labile proteins $(C_{LAB})$, and their half-life time $(T_{1/2})$. Moreover, it gives more realistic information on resultant activity in situ $(V_{T1/2})$ of ecto- and extracellular proteases that are responsible for the biological degradation of these compounds. Although the results provided by the proposed method are general y well correlated with those obtained by classical procedures, they better characterize the dynamics of protein degradation processes, especially in eutrophic or hypereutrophic lakes. In these environments, processes of protein decomposition occur mainly on the particles and depend primarily on a metabolic activity of seston-attached bacteria. The method was tested in three lakes. The different degree of eutrophication of these lakes was clearly demonstrated by the measured real proteolytic pattern and confirmed by conventional trophic state determinants.

Identification of Autumn Phytoplankton in the Lakes of Han River system (한강수계 호수에 출현하는 가을철 식물플랑크톤의 생태적 현황 연구)

  • Kim, Yoon-Jung;Kim, Min-Kyung;Lee, Sang-Don
    • Journal of Wetlands Research
    • /
    • v.14 no.3
    • /
    • pp.429-438
    • /
    • 2012
  • Han River is very important as a source of drinking water in metropolitan area. This study was conducted to figure out diversity and dynamics of plankton community in the seven lakes (lakes Paro, Chunchon, Soyang, Uiam, Chungpyung, Paldang, Chungju) of Han Riversystem. A total of 76 genera and 121 species were investigated by taxonomic identification in November 2008. Cyclotella sp. and Microcystis sp. was a dominant species in lake Paro and Chungju respectively. Aulacoseira granulata was dominant in lakes Chunchon, Paldang and Chungpyung. And Fragilalia crotonesis was a dominant species in lake Soyang and Uiam. Our results can be useful when compared to the results using molecular biological method to supplement taxonomic identification.

Contrasting Zooplankton Community Structure in Sandusky Bay and Lake Erie (Sandusky Bay 와 Lake Erie 의 상이한 동물 플랑크톤 군집의 구조에 대하여)

  • Hwang, Soon-Jin;Robert T. Heath;Ralph J. Garono
    • The Korean Journal of Ecology
    • /
    • v.19 no.6
    • /
    • pp.543-562
    • /
    • 1996
  • Zooplankton community structure and the factors correlated with community differences were examined in sandusky Bay (SB) and the open water of Lake Erie (LE, U.S.A.). SB zooplankton communities differed from those in LE by having a greater rotifer density and species richness. Keratella spp., Brachionus spp., and Pompholyx complanata dominated SB rotifers; Brachionus and Pompholyx were rarely seen in LE. Of 19 rotifer species observed, nine species were found only at SB sites. Ordination of zooplankton species abundance by detrended correspondence analysis (DCA) showed an overlap between SB and LE sites, but indicated a portion of the space that was occupied by only SB communities. The seasonal trajectories of zooplankton dynamics in the ordination space at SB sites differed from that of LE. The zooplankton most important in forcing site separation along a DCA Axis I at SB sites were Brachionus angularis, Pompholyx complanata, Keratella valga, Keratella quadrata, Filinia terminalis (rotifers), and Eubosmina coregoni and Daphnia (cladocerans). These species had axis scores which were significantly correlated (p<0.01) with bacterial density and bacterial phosphorus, total phosphorus, and algal density. Very high baterial density and very abundant bacterivorous rotifers in SB suggest that the transport of bacterial carbon through rotifers may be a relatively important link to higher trophic leaels. We believe that this "microbial carbon flow" from the base of the food web may be important in determining the suitability of SB as a spawning site and nursery for larval and juvenile fish.nile fish.

  • PDF