• Title/Summary/Keyword: Lagrangian method

Search Result 714, Processing Time 0.034 seconds

Finite Element Analysis of Axisymmetric Hot Extrusion Through Continuous Dies Using the Arbitrary Lagrangian-Eulerian Description (곡면금형을 통한 축대창 열간 압출의 ALE 유한요소 해석)

  • 강연식;양동열
    • Transactions of Materials Processing
    • /
    • v.4 no.1
    • /
    • pp.69-78
    • /
    • 1995
  • The arbitrary Lagrangian-Eulerian(ALE) finite element analysis is applied to the axisymmetric hot extrusion through continuous dies. In order to simulate hot forming problems, an ALE scheme for temperature analysis is proposed. The computed results are compared with experimental results as with those by pure Lagrangian method. In the present study mesh control is accomplished by the use of isoparametric mapping of quadrilaterals.

  • PDF

An ALE Finite Element Formulation for Rigid-Viscoplatic Materials and Its Application to Axisymmetric Extrusion through Square Dies (ALE 묘사에 근거한 강-점소성 유한요소 수식화와 축대칭 평금형 압출에의 적용)

  • 강연식;양동열
    • Transactions of Materials Processing
    • /
    • v.3 no.2
    • /
    • pp.156-166
    • /
    • 1994
  • An arbitrary Lagrangian-Eulerian (ALE) finite element method has been developed. The finite element formation is derived and implemented for rigid-viscoplastic materials. The developed computer program is applied to the analysis of axisymmetric square die extrusion, which has many difficulties with updated Lagrangian approach. The results are compared with those from updated Largrangian approach. The results are compared with those from updated Lagrangian finite element program. Updating scheme of time dependent variables and mesh control are also examined.

  • PDF

A Lagrangian Based Scalar PDF Method for Turbulent Combustion Models

  • Moon, Hee-Jang;Borghi, Roland
    • Journal of Mechanical Science and Technology
    • /
    • v.18 no.8
    • /
    • pp.1470-1478
    • /
    • 2004
  • In this paper, a new 'presumed' Probability Density Function (PDF) approach coupled with a Lagrangian tracking method is proposed for turbulent combustion modeling. The test and the investigation of the model are conducted by comparing the model results with DNS data for a premixed flame subjected in a decaying turbulent field. The newly constructed PDF, which incorporates the instantaneous chemical reaction term, demonstrates consistent improvement over conventional assumed PDF models. It has been found that the time evolution of the mean scalar, the variance and the mean reaction rate are strongly influenced by a parameter deduced by a Lagrangian equation which takes into account explicitly the local reaction rate. Tests have been performed for a moderate Damkohler number, and it is expected the model may cover a broader range of Damkohler number. The comparison with the DNS data demonstrates that the proposed model may be promising and affordable for implementation in a moment-equation solver.

Eulerian-Lagrangian Modeling of One-Dimensional Dispersion Equation in Nonuniform Flow (부등류조건에서 종확산방정식의 Eulerian-Lagrangian 모형)

  • 김대근;서일원
    • Journal of Environmental Science International
    • /
    • v.11 no.9
    • /
    • pp.907-914
    • /
    • 2002
  • Various Eulerian-Lagrangian models for the one-dimensional longitudinal dispersion equation in nonuniform flow were studied comparatively. In the models studied, the transport equation was decoupled into two component parts by the operator-splitting approach; one part is governing advection and the other is governing dispersion. The advection equation has been solved by using the method of characteristics following fluid particles along the characteristic line and the results were interpolated onto an Eulerian grid on which the dispersion equation was solved by Crank-Nicholson type finite difference method. In the solution of the advection equation, Lagrange fifth, cubic spline, Hermite third and fifth interpolating polynomials were tested by numerical experiment and theoretical error analysis. Among these, Hermite interpolating polynomials are generally superior to Lagrange and cubic spline interpolating polynomials in reducing both dissipation and dispersion errors.

Block Coordinate Descent (BCD)-based Decentralized Method for Joint Dispatch of Regional Electricity Markets (BCD 기반 분산처리 기법을 이용한 연계전력시장 최적화)

  • Moon, Guk-Hyun;Joo, Sung-Kwan;Huang, Anni
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.58 no.1
    • /
    • pp.23-27
    • /
    • 2009
  • The joint dispatch of regional electricity markets can improve the overall economic efficiency of interconnected markets by increasing the combined social welfare of the interconnected markets. This paper presents a new decentralized optimization technique based on Augmented Lagrangian Relaxation (ALR) to perform the joint dispatch of interconnected electricity markets. The Block Coordinate Descent (BCD) technique is applied to decompose the inseparable quadratic term of the augmented Lagrangian equation into individual market optimization problems. The Interior Point/Cutting Plane (IP/CP) method is used to update the Lagrangian multiplier in the decomposed market optimization problem. The numerical example is presented to validate the effectiveness of the proposed decentralized method.

Four Representative Applications of the Energy Shaping Method for Controlled Lagrangian Systems

  • Ng, Wai Man;Chang, Dong Eui;Song, Seong-Ho
    • Journal of Electrical Engineering and Technology
    • /
    • v.8 no.6
    • /
    • pp.1579-1589
    • /
    • 2013
  • We provide a step-by-step, easy-to-follow procedure for the method of controlled Lagrangian systems. We apply this procedure to solve the energy shaping problem for four benchmark examples: the inertial wheel pendulum, an inverted pendulum on a cart, the system of ball and beam and the Furuta pendulum.

A Study of Accuracy Improvement of an Analysis of Flow around Arbitrary Bodies by Using an Eulerian-Lagrangian Method (Eulerian-Lagrangian 방법을 사용한 임의 물체주위 유동해석의 정도 향상을 위한 연구)

  • Park Il-Ryong;Chun Ho-Hwan
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2001.05a
    • /
    • pp.105-110
    • /
    • 2001
  • An Eulerian-Lagrangian method, so called immersed boundary method, is used for analysing viscous flow around arbitrary bodies, where governing equations are discretized on a regular grid by using a finite volume method. To improve the accuracy of flow near body boundaries, a second-order accurate interpolation scheme is used and a level-set based grid deformation method is presented to construct the adaptive grids around body boundaries. The present scheme is used to simulate steady flow around a semicircular cylinder mounted on the bottom of flow domain and calculated results are validated by results of a body fitted grid method. Finally, present method is applied to a complex flow around multi body and the usefulness is checked by investigating calculated results.

  • PDF

Flood Impact Pressure Analysis of Vertical Wall Structures using PLIC-VOF Method with Lagrangian Advection Algorithm

  • Phan, Hoang-Nam;Lee, Jee-Ho
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.23 no.6
    • /
    • pp.675-682
    • /
    • 2010
  • The flood impact pressure acting on a vertical wall resulting from a dam-breaking problem is simulated using a navier-Stokes(N-S) solver. The N-S solver uses Eulerian Finite Volume Method(FVM) along with Volume Of Fluid(VOF) method for 2-D incompressible free surface flows. A Split Lagrangian Advection(SLA) scheme for VOF method is implemented in this paper. The SLA scheme is developed based on an algorithm of Piecewise Linear Interface Calculation(PLIC). The coupling between the continuity and momentum equations is affected by using a well-known Semi-Implicit Method for Pressure-Linked Equations (SIMPLE) algorithm. Several two-dimensional numerical simulations of the dam-breaking problem are presented to validate the accuracy and demonstrate the capability of the present algorithm. The significance of the time step and grid resolution are also discussed. The computational results are compared with experimental data and with computations by other numerical methods. The results showed a favorable agreement of water impact pressure as well as the global fluid motion.

Importance of the Settling Velocity on the Suspended Solids Diffusion in Osaka Bay (오사카만에서 부유토사의 확산특성에 대한 침강속도의 중요성)

  • 김종인
    • Journal of Ocean Engineering and Technology
    • /
    • v.16 no.5
    • /
    • pp.41-48
    • /
    • 2002
  • Numerical experiments are conducted using a three-dimensional baroclinic equation model and a Lagrangian method for clarifying the effect of th settling velocity on the suspended solids diffusion caused by the dredging and the reclamination works. Diffusion characteristics of the neutral particles and the weighting particles is experimented by the Lagrangian particles trajectory model, The results show that the diffusion characteristics of the suspended solids is effected by the settling velocity classified by the particles size in the density layered semi-closed bay. To estimate exactly the diffusion characteristics of the suspended solids and the contaminant with weight the three-dimensional baroclinic equation model and the three-dimensional Lagrangian particles trajectory model considering the settling velocity of the particle in the density layered semi-closed bay must be used.