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SOLUTION OF SEMICOERCIVE SIGNORINI PROBLEM

BASED ON A DUALITY SCHEME WITH MODIFIED

LAGRANGIAN FUNCTIONAL

Robert V. Namm, Gyungsoo Woo∗, Shu-Sen Xie, and Sucheol Yi

Abstract. In this paper, the iterative Uzawa method with a modified
Lagrangian functional is investigated to seek a saddle point for the semi-
coercive variational Signorini inequality.

1. Introduction

The construction and the analysis of duality methods for solving elliptic vari-
ational inequalities in mechanics are usually based on classical duality schemes.
Therefore, it is assumed that the functionals to be minimized are strongly con-
vex. However, for a number of practically important variational inequalities,
strong convexity holds only on finite codimensional subspaces of the original
Hilbert space. The use of the classical Lagrangian functional in such semico-
ercive problems does not guarantee the convergence of the available methods
for finding saddle points ([5, 4]), and, hence, a modified Lagrangian functional
([9, 8]) may be more appropriate to use. In this paper, the Uzawa method ([1])
with a modified Lagrangian functional is investigated for an application to find
a saddle point in the scalar semicoercive Signorini problem.

2. Modified Lagrangian functional

Consider the following variational Signorini problem (see [3, 6])

(1)

{
J(v) = 1

2

∫
|∇v|2 −

∫
f v − min,

v ∈ K = {w ∈ W 1
2 (Ω) : γv ≥ 0 a.e. on Γ}.

Here, Ω ⊂ Rn (n=2, 3) is a bounded domain with a sufficiently smooth bound-

ary Γ, f ∈ L2(Ω) is a given function, and γw ∈ W
1/2
2 (Γ) is the trace of

w ∈ W 1
2 (Ω) on Γ.
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If the solution u to problem (1) belongs to the space W 2
2 (Ω), then u satisfies

the nonlinear boundary value problem (see [3])

(2)

{
−∆u = f in Ω,
u ≥ 0, ∂u

∂n ≥ 0, u ∂u
∂n = 0 on Γ,

where n is the unit outer normal to Γ. Since the functional J(v) is not strictly
coercive on Γ, problem (1) may have no solutions. However, if

(3)

∫
Ω

f dΩ < 0,

then J(v) → +∞ as ∥v∥W 1
2 (Ω) → ∞, v ∈ K, and, hence, problem (1) is solvable

(cf. [3, 2]). Moreover, in view of (3), the solution is unique. In what follows,
we assume that condition (3) is fulfilled.

Consider the classical Lagrangian functional

L(v, l)(4)

= J(v)−
∫
Γ

l γv dΓ

=
1

2

∫
Ω

|∇v|2 dΩ−
∫
Ω

f v dΩ−
∫
Γ

l γv dΓ (v, l) ∈ W 1
2 (Ω)× L2(Γ).(5)

Let (L2(Γ))
+ be the cone of square integrable functions on Γ.

Definition. A point (v∗, l∗) ∈ W 1
2 (Ω) × (L2(Γ))

+ is called a saddle point of
the classical Lagrangian functional L(v, l) if

L(v∗, l) ≤ L(v∗, l∗) ≤ L(v, l∗) ∀(v, l) ∈ W 1
2 (Ω)× (L2(Γ))

+.

It has been shown in [9] that if the solution u of problem (1) belongs to the space
W 2

2 (Ω), then the Lagrangian functional has the unique saddle point
(
u, ∂u

∂n

)
;

i.e., v∗ = u almost everywhere in Ω and l∗ = ∂u
∂n almost everywhere on Γ.

Nevertheless, an application of the Uzawa method to the search for a saddle
point of L(v, l) is impossible in the semicoercive case, because the convergence
of this iterative method is ensured by coordinating the step size for the dual
variable l with the positive definiteness constant in the quadratic form of the
functional to be minimized. However, in semicoercive problem (1), the qua-
dratic form

a(v, v) =

∫
Ω

|∇v|2dΩ

is only positive semidefinite. To overcome this difficulty, consider a modification
of the Lagrangian functional.

We define the following functional on the space W 1
2 (Ω)× L2(Γ)× L2(Γ):

K(v, l,m) =

{
J(v) + 1

2r

∫
Γ

(
(l + rm)

2 − l2
)
dΓ if− γv ≤ m a.e. on Γ

+∞ otherwise,
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where r > 0 is a constant. It can be easily seen that

inf
m

K(v, l,m) = inf
−γv≤m

{
J(v) +

1

2r

∫
Γ

(
(l + rm)

2 − l2
)
dΓ

}
= J(v) +

1

2r
inf

−γv≤m

∫
Γ

(
(l + rm)

2 − l2
)
dΓ

= J(v) +
1

2r

∫
Γ

((
(l − r γv)

+
)2

− l2
)

dΓ,

where (l − r γv)
+
= max{0, l − r γv}.

We define the modified Lagrangian functional M(v, l) on the space W 1
2 (Ω)×

L2(Γ) as

(6) M(v, l) = inf
m

K(v, l,m) = J(v) +
1

2r

∫
Γ

((
(l − r γv)

+
)2

− l2
)

dΓ.

It can be shown that the functional M(v, l) is convex with respect to v for
a fixed l and is concave with respect to l for a fixed v. Moreover, M(v, l) is
Gâteaux differentiable in both its variables v and l. Furthermore, the Gâteaux
derivatives ∇vM(v, l) and ∇lM(v, l) satisfy the equalities

(∇vM(v, l), h) = a(v, h)− (f, h)−
∫
Γ

(l − r γv)+h dΓ ∀h ∈ W 1
2 (Ω),

(∇lM(v, l), θ) =
1

r

∫
Γ

(
(l − r γv)+ − l

)
θ dΓ ∀ θ ∈ L2(Γ),

where

a(v, h) =

∫
Ω

∇v∇h dΩ, (f, h) =

∫
Ω

f h dΩ.

Definition. A point (v∗, l∗) ∈ W 1
2 (Ω) × L2(Γ) is called a saddle point of the

modified Lagrangian functional M(v, l) if

M(v∗, l) ≤ M(v∗, l∗) ≤ M(v, l∗) ∀(v, l) ∈ W 1
2 (Ω)× L2(Γ).

Let us define the functional

M(l) = inf
v
M(v, l) = inf

v
inf
m

K(v, l,m).

Since

inf
v
inf
m

K(v, l,m) = inf
m

inf
v
K(v, l,m),

we get

M(l) = inf
m

inf
v
K(v, l,m)

= inf
m

inf
−γv≤m

{
J(v) +

1

2r

∫
Γ

(
(l + rm)

2 − l2
)
dΓ

}
= inf

m

{
inf

−γv≤m
J(v) +

∫
Γ

l m dΓ +
r

2

∫
Γ

m2 dΓ

}
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= inf
m

{
χ(m) +

∫
Γ

l m dΓ +
r

2

∫
Γ

m2 dΓ

}
,(7)

where χ(m) = inf−γv≤m J(v).
It is easy to show that χ(m) is a convex function (see [9, 1]) and χ(m) ̸= −∞

for all m ∈ L2(Γ). Thus, the functional M(l) has the following two representa-
tions:

(8) M(l) = inf
v

{
J(v) +

1

2r

∫
Γ

((
(l − r γv)

+
)2

− l2
)

dΓ

}
,

(9) M(l) = inf
m

{
χ(m) +

∫
Γ

l m dΓ +
r

2

∫
Γ

m2 dΓ

}
.

Since the expression χ(m) +
∫
Γ
l m dΓ + r

2

∫
Γ
m2 dΓ is a strongly convex func-

tional with respect to m ∈ L2(Γ), the infimum in problem (9) is attained at a
unique element m(l) for an arbitrary fixed l ∈ L2(Γ).

Theorem 2.1. Problem (8) is solvable for an arbitrary fixed l ∈ L2(Γ).

Proof. Since the problem {
J(v) − min,
−γv ≤ m

is solvable under arbitrary m ∈ L2(Γ) (cf. [1]), we can define

v(l) = arg min
−γv≤m(l)

J(v) ∀l ∈ L2(Γ).

We then have

M(l) = J(v(l)) +

∫
Γ

l m(l) dΓ +
r

2

∫
Γ

(m(l))2 dΓ = K(v(l), l,m(l)).

From (3), we get

inf
v

{
J(v) +

1

2r
inf

−γv≤m

∫
Γ

(
(l + rm)2 − l2

)
dΓ

}
= inf

v

{
J(v) +

1

2r

∫
Γ

((
(l − r γv)

+
)2

− l2
)

dΓ

}
= M(l) = inf

v
inf
m

K(v, l,m) = inf
m

inf
v
K(v, l,m)

= J(v(l)) +
1

2r

∫
Γ

(
(l + rm(l))2 − l2

)
dΓ.(10)

We will now show that
(11)

J(v(l))+
1

2r

∫
Γ

((l+rm(l))2−l2) dΓ = J(v(l))+
1

2r
inf

−γv(l)≤m

∫
Γ

((l+rm)2−l2) dΓ.

For our proof we will use a contradiction. Suppose we had

J(v(l))+
1

2r

∫
Γ

((l+rm(l))2−l2) dΓ > J(v(l))+
1

2r
inf

−γv(l)≤m

∫
Γ

((l+rm)2−l2) dΓ;
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that is, ∫
Γ

((l + rm(l))2 − l2) dΓ > inf
−γv(l)≤m

∫
Γ

((l + rm)2 − l2) dΓ.

We then have

inf
v

{
J(v) +

1

2r
inf

−γv≤m

∫
Γ

((l + rm)2 − l2) dΓ

}
= M(l) = J(v(l)) +

1

2r

∫
Γ

((l + rm(l))2 − l2) dΓ

> J(v(l)) +
1

2r
inf

−γv(l)≤m

∫
Γ

((l + rm)2 − l2) dΓ

≥ inf
v

{
J(v) +

1

2r
inf

−γv≤m

∫
Γ

((l + rm)2 − l2) dΓ

}
,

which is a contradiction, and, hence, (11) holds.
It follows from (10) and (11) that problem (8) is solvable and

v(l) = argmin
v

{
J(v) +

1

2r

∫
Γ

((
(l − r γv)

+
)2

− l2
)

dΓ

}
. □

Remark 2.2. Theorem 2.1 was proved in [1] for l ∈ (L2(Γ))
+ only.

Consider the problem

(12)

{
M(l) − max,
l ∈ L2(Γ),

which is called the dual of problem (1).
Let us define the functional

M(v) = sup
l∈L2(Γ)

M(v, l) ∀v ∈ W 1
2 (Ω).

Suppose that v ∈ G. Then K(v, l, 0) = J(v) for all l ∈ L2(Γ), and, thus, we
have

M(v, l) = inf
m∈L2(Γ)

K(v, l,m) ≤ J(v) ∀v ∈ K.

Hence, we get

(13) M(v) = sup
l∈L2(Γ)

M(v, l) ≤ J(v) ∀v ∈ K.

If −γv ≤ m a.e. on Γ, then we have

K(v, 0,m) = J(v) +
r

2

∫
Γ

m2 dΓ.

Therefore, we obtain

M(v, 0) = inf
m∈L2(Γ)

K(v, 0,m) = inf
−γv≤m

K(v, 0,m)

= inf
−γv≤m

{
J(v) +

r

2

∫
Γ

m2 dΓ

}
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= J(v) +
r

2
inf

−γv≤m

∫
Γ

m2 dΓ ≥ J(v) ∀v ∈ W 1
2 (Ω).

We then have

(14) M(v) = sup
l∈L2(Γ)

M(v, l) ≥ M(v, 0) ≥ J(v) ∀v ∈ W 1
2 (Ω).

It follows from (13) and (14) that

(15) M(v) = J(v) ∀v ∈ K.

We now consider the functional

K(v, l,m) =

{
J(v) +

∫
Γ
l mdΓ, if − γv ≤ m a.e. on Γ,

+∞ otherwise.

One can easily see that

inf
m∈L2(Γ)

K(v, l,m) = J(v) +

∫
Γ

l m dΓ = L(v, l) ∀l ∈ (L2(Γ))
+,

where L(v, l) is the quantity appears in (4), and

K(v, l,m) ≥ K(v, l,m),

which implies
M(v, l) ≥ L(v, l) ∀l ∈ (L2(Γ))

+.

Hence, we get M(v) ≥ L(v), where L(v) = supl∈(L2(Γ))+ L(v, l).

If v ∈/ K, then

(16) L(v) = sup
l∈(L2(Γ))+

L(v, l) = sup
l∈(L2(Γ))+

{
J(v)−

∫
Γ

l γv dΓ

}
= +∞,

and, thus, M(v) = +∞ ∀v ∈/ K. From (15) and (16), we have

M(v) =

{
J(v), if v ∈ K,
+∞ otherwise.

Hence, problem (1) can be presented as

(17)

{
M(v)−min,
v ∈ W 1

2 (Ω).

It is obvious that

inf
v∈W 1

2 (Ω)
sup

l∈L2(Γ)

M(v, l) ≥ sup
l∈L2(Γ)

inf
v∈W 1

2 (Ω)
M(v, l),

(18) inf
v∈W 1

2 (Ω)
M(v) ≥ sup

l∈L2(Γ)

M(l).

Suppose that we have equality

M(v∗) = M(l∗)

for some v∗ ∈ W 1
2 (Ω) and l∗ ∈ L2(Γ). Then from (18), we can see that v∗ and

l∗ are solutions of problems (17) and (12), respectively.
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It is easy to show that (v∗, l∗) is a saddle point of the modified Lagrangian
functional M(v, l).

Theorem 2.3. In order that (v∗, l∗) ∈ W 1
2 (Ω) × L2(Γ) is a saddle point of

M(v, l) in (6), it is necessary and sufficient for v∗ to be a solution of Signorini
problem (1) and for all m ∈ L2(Γ) the inequality

χ(m) +

∫
Γ

l∗ mdΓ +
r

2

∫
Γ

m2 dΓ ≥ χ(0)

must be fulfilled.

Proof. Let (v∗, l∗) ∈ W 1
2 (Ω)× L2(Γ) be a saddle point of M(v, l). This means

that

sup
l∈L2(Γ)

M(v∗, l) = M(v∗, l∗) = inf
v∈W 1

2 (Ω)
M(v, l∗),

(19) M(v∗) = M(l∗),

from which and (18), we can see that v∗ is a solution of problem (17) and l∗ is
a solution of problem (12), respectively. Hence, we get

M(l∗) = M(v∗) = min
v∈K

J(v) = χ(0),

which means that

inf
m∈L2(Γ)

{
χ(m) +

∫
Γ

l∗ mdΓ +
r

2

∫
Γ

m2 dΓ

}
= χ(0);

that is,

χ(m) +

∫
Γ

l∗ mdΓ +
r

2

∫
Γ

m2 dΓ ≥ χ(0) ∀m ∈ L2(Γ).

Let v∗ be a solution of problem (17) and

χ(m) +

∫
Γ

l∗ mdΓ +
r

2

∫
Γ

m2 dΓ ≥ χ(0) ∀m ∈ L2(Γ).

We then have

M(l∗) = inf
m∈L2(Γ)

{
χ(m) +

∫
Γ

l∗ mdΓ +
r

2

∫
Γ

m2 dΓ

}
≥ χ(0) = M(v∗).

Since M(v) ≥ M(l) ∀(v, l) ∈ W 1
2 (Ω)× L2(Γ), we get

M(v∗) = M(l∗).

It is obvious that

inf
v∈W 1

2 (Ω)
M(v, l∗) ≤ M(v∗, l∗) ≤ sup

l∈L2(Γ)

M(v∗, l).

Therefore, we obtain

inf
v∈W 1

2 (Ω)
M(v, l∗) = M(v∗, l∗) = sup

l∈L2(Γ)

M(v∗, l);
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that is,

M(v∗, l) ≤ M(v∗, l∗) ≤ M(v, l∗) ∀(v, l) ∈ W 1
2 (Ω)× L2(Γ). □

Theorem 2.4. Let (v∗, l∗) ∈ W 1
2 (Ω)× (L2(Γ))

+ be a saddle point of the clas-
sical Lagrangian functional L(v, l) given in (4). Then (v∗, l∗) is a saddle point
of modified Lagrangian functional M(v, l) in (6).

Proof. We have

L(v∗, l) ≤ L(v∗, l∗) ≤ L(v, l∗) ∀(v, l) ∈ W 1
2 (Ω)× (L2(Γ))

+.

This means

sup
l∈(L2(Γ))+

L(v∗, l) = L(v∗, l∗) = inf
v∈W 1

2 (Ω)
L(v, l∗),

L(v∗) = L(v∗, l∗) = L(l∗),

where

L(v) = sup
l∈(L2(Γ))+

L(v, l) ∀v ∈ W 1
2 (Ω),

L(l) = inf
v∈W 1

2 (Ω)
L(v, l) ∀l ∈ (L2(Γ))

+.

Taking into account that v∗ is a solution of problem (1) we have

L(v∗) = sup
l∈(L2(Γ))+

{
J(v∗)−

∫
Γ

l γv∗ dΓ

}
= J(v∗) = χ(0).

Furthermore, we have

L(l∗) = inf
v∈W 1

2 (Ω)
L(v, l∗)

= inf
v∈W 1

2 (Ω)
inf

m∈L2(Γ)
K(v, l∗,m)

= inf
m∈L2(Γ)

inf
v∈W 1

2 (Ω)
K(v, l∗,m)

= inf
m−γv≤m

inf
v∈W 1

2 (Ω)

{
J(v∗) +

∫
Γ

l∗ mdΓ

}
= inf

m∈L2(Γ)

{
χ(m) +

∫
Γ

l∗ mdΓ

}
.

Hence, we get

χ(0) = inf
m∈L2(Γ)

{
χ(m) +

∫
Γ

l∗ mdΓ

}
,

or

χ(m) +

∫
Γ

l∗ mdΓ ≥ χ(0) ∀m ∈ L2(Γ).

Since

χ(m) +

∫
Γ

l∗ mdΓ +
r

2

∫
Γ

m2 dΓ ≥ χ(m) +

∫
Γ

l∗ mdΓ ≥ χ(0),
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it follows from Theorem 2.3 that (v∗, l∗) is a saddle point of M(v, l). □

Theorem 2.5. Let (v∗, l∗) be a saddle point of the modified Lagrangian func-
tional M(v, l) in (6). Then (v∗, l∗) is a saddle point of the classical Lagrangian
functional L(v, l) given in (4).

Proof. Let us show that −l∗ ∈ ∂χ(0), where ∂χ(0) is the subdifferential of the
convex function χ(m) at the point zero, which means

χ(m)− χ(0) ≥ −
∫
Γ

l∗ mdΓ ∀m ∈ L2(Γ).

We will give the proof via a contradiction. Suppose that we had −l∗ ̸∈ ∂χ(0).
Then there exists an m̄ ∈ L2(Γ) such that

χ(m̄) +

∫
Γ

l∗ m̄ dΓ < χ(0).

Let ζ = χ(0)−χ(m̄)−
∫
Γ
l∗ m̄ dΓ > 0 and let m(λ) = λm̄+(1−λ)·0, ∀λ ∈ (0, 1).

From Theorem 2.3, we have

χ(m) +

∫
Γ

l∗ mdΓ +
r

2

∫
Γ

m2 dΓ ≥ χ(0) ∀m ∈ L2(Γ).

Therefore, if m = λm̄, we get

χ(0) ≤ χ(m(λ)) + λ

∫
Γ

l∗ m̄ dΓ +
rλ2

2

∫
Γ

m̄2 dΓ

≤ λχ(m̄) + (1− λ)χ(0) + λ

∫
Γ

l∗ m̄ dΓ +
rλ2

2

∫
Γ

m̄2 dΓ

= λ

(
χ(m̄)− χ(0) +

∫
Γ

l∗ m̄ dΓ

)
+ χ(0) +

rλ2

2

∫
Γ

m̄2 dΓ,

and

λ

(
χ(0)− χ(m̄)−

∫
Γ

l∗ m̄ dΓ

)
≤ rλ2

2

∫
Γ

m̄2 dΓ,

as well as

0 < ζ = χ(0)− χ(m̄)−
∫
Γ

l∗ m̄ dΓ ≤ rλ

2

∫
Γ

m̄2 dΓ.

By letting λ = 0 in the last inequality set, we obtain the contradiction 0 < 0.
Hence, we must have −l∗ ∈ ∂χ(0), which implies

(20) χ(m) +

∫
Γ

l∗ mdΓ ≥ χ(0) ∀m ∈ L2(Γ).

It follows from (20) that we get∫
Γ

l∗ mdΓ ≥ χ(0)− χ(m) ≥ 0 ∀m ∈ (L2(Γ))
+,
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and, hence, l∗ ∈ (L2(Γ))
+. We then have

L(l∗) = inf
v∈W 1

2 (Ω)
L(v, l∗) = inf

v∈W 1
2 (Ω)

{
χ(m) +

∫
Γ

l∗ mdΓ

}
.

From (20), we get

L(l∗) ≥ χ(0).

Furthermore, taking into account that v∗ is a solution of problem (1), we have

L(v∗) = sup
l∈(L2(Γ))+

L(v∗, l) = sup
l∈(L2(Γ))+

{
J(v∗)−

∫
Γ

l γv∗ dΓ

}
= J(v∗) = χ(0).

Therefore, we obtain

χ(0) = L(v∗) ≥ L(l∗) ≥ χ(0);

that is,

L(v∗) = L(l∗),

which implies that (v∗, l∗) is a saddle point of L(v, l). □

3. Conclusion and discussion

As we mentioned, other well-known methods based on classical Lagrangian
functionals do not guarantee the convergence to a saddle point in semicoercive
variational inequality. Theorems 2.4 and 2.5 allow to consider corresponding
methods based on modified Lagrangian functionals. For example, the Uzawa
method in [1] can be used, and the algorithm can be described as follows:

Choose an arbitrary initial point l0 ∈ W
1/2
2 (Γ), that is the trace on Γ of a

function u0 ∈ W 1
2 (Ω).

U-Step1: at the kth step (k = 0, 1, . . . ), set

(21) uk+1 = arg min
v∈W 1

2 (Ω)
M(v, lk).

U-Step2: find lk+1 by the formula

lk+1 = (lk − r γuk+1)+.

According to Theorem 2.1, the points uk (k =1,2,. . . ) defined in (21) all exist.
They are defined uniquely if uk ∈ W 2

2 (Ω) (cf. [1]). However, to find the element
uk+1 at U-Step 1 of the Uzawa algorithm, one must minimize the functional
M(v, lk), which is not strongly convex with respect to the variable v.

Woo et al. [8] introduced a method for solving problem (1) based on the
combination of the modified Lagrangian functional with the proximal regular-
ization. That algorithm can be summarized as follows:

Given an arbitrary starting point (u0, l0) ∈ W 1
2 (Ω)×W

1/2
2 (Γ), the sequence

{(uk, lk)} is generated by
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W-Step1: at the kth step (k = 0, 1, . . . ), the functional

Lk(v) = M(v, lk) +
1

2
∥v − uk∥2L2(Γ)

∀v ∈ W 1
2 (Ω)

is constructed and the point

uk+1 = arg min
v∈W 1

2 (Ω)
Lk(v)

is determined.
W-Step2: the dual variable lk+1 is corrected by the formula

lk+1 = (lk − r γuk+1)+.

The regularizing addition 1
2∥v − uk∥2L2(Ω) in W-Step 1 provides the strong

convexity of the minimized functionals Lk(v). This guarantees that each of the
auxiliary problems {

Lk(v) − min,
v ∈ W 1

2 (Ω)

has a unique solution, which can be found by efficient optimization methods.
Under the assumptions

• uk ∈ W 2
2 (Ω), k = 1, 2, . . . ,

• ∥uk∥W 2
2 (Ω) ≤ C, where C > 0 is a constant,

one can show that the uniqueness of the saddle point of the Lagrangian func-
tional L(v, l) or M(v, l) and the convergence in W 1

2 (Ω) × L2(Γ) to a unique
saddle point of the sequence {(uk, lk)} generated by the W-Steps 1 and 2.

The method of Woo et al. combined with the finite element method was
introduced in [7].
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