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SOLUTION OF SEMICOERCIVE SIGNORINI PROBLEM
BASED ON A DUALITY SCHEME WITH MODIFIED
LAGRANGIAN FUNCTIONAL

ROBERT V. NAMM, GYUNGSOO W0O0O*, SHU-SEN XIE, AND SUCHEOL Y1

ABSTRACT. In this paper, the iterative Uzawa method with a modified
Lagrangian functional is investigated to seek a saddle point for the semi-
coercive variational Signorini inequality.

1. Introduction

The construction and the analysis of duality methods for solving elliptic vari-
ational inequalities in mechanics are usually based on classical duality schemes.
Therefore, it is assumed that the functionals to be minimized are strongly con-
vex. However, for a number of practically important variational inequalities,
strong convexity holds only on finite codimensional subspaces of the original
Hilbert space. The use of the classical Lagrangian functional in such semico-
ercive problems does not guarantee the convergence of the available methods
for finding saddle points ([5, 4]), and, hence, a modified Lagrangian functional
([9, 8]) may be more appropriate to use. In this paper, the Uzawa method ([1])
with a modified Lagrangian functional is investigated for an application to find
a saddle point in the scalar semicoercive Signorini problem.

2. Modified Lagrangian functional

Consider the following variational Signorini problem (see [3, 6])

J(v):% Vo2 — [ fv — min,
(1) { ve]C:{{uEW%(f{): yv >0 a.e. on T}

Here, Q@ C R™ (n=2, 3) is a bounded domain with a sufficiently smooth bound-

ary I', f € Ly(Q) is a given function, and yw € W21/2(F) is the trace of

w € W3 (Q) on T.
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If the solution u to problem (1) belongs to the space W2(12), then u satisfies
the nonlinear boundary value problem (see [3])

@ { —Au=finQ,

u > 0, 2—220, u%‘izOonl—‘,

where n is the unit outer normal to I'. Since the functional J(v) is not strictly
coercive on I'; problem (1) may have no solutions. However, if

(3) /QfdQ <0,

then J(v) — +00 as [|v[ly; @) — 00, v € K, and, hence, problem (1) is solvable
(cf. [3, 2]). Moreover, in view of (3), the solution is unique. In what follows,
we assume that condition (3) is fulfilled.

Consider the classical Lagrangian functional

(4) L(v,1)
J(v)—/rl’yvdf

(5)

1

7/ Vo2 d9 —/ FodQ— / Iyodl (0,1) € WA(Q) x La(T).
2 Ja Q r

Let (L2(T"))™ be the cone of square integrable functions on T.

Definition. A point (v*,1*) € WH(Q) x (Lo(T))* is called a saddle point of
the classical Lagrangian functional L(v,1) if

L(v*,1) < L(v*,1*) < L(v,1*)  Y(v,1) € WH(Q) x (La(T))T.

It has been shown in [9] that if the solution u of problem (1) belongs to the space
W2(€2), then the Lagrangian functional has the unique saddle point (u, g—;f);
i.e., v* = u almost everywhere in ) and [* = g—z almost everywhere on T'.

Nevertheless, an application of the Uzawa method to the search for a saddle
point of L(v,1) is impossible in the semicoercive case, because the convergence
of this iterative method is ensured by coordinating the step size for the dual
variable [ with the positive definiteness constant in the quadratic form of the
functional to be minimized. However, in semicoercive problem (1), the qua-
dratic form

a(vm):/ |Vo|2dQ
Q

is only positive semidefinite. To overcome this difficulty, consider a modification
of the Lagrangian functional.
We define the following functional on the space W3 (2) x La(T") x Lo(T):

JW)+ 4 fo (W +rm)? =) dU if—qv<m ae onT

400 otherwise,

K(v,l,m) = {
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where 7 > 0 is a constant. It can be easily seen that

inf K(v,l,m) = inf {J(v)-l—;r/r((l-i-rm)z—lz) dr}

m —yv<m

r —yv<m

= J(v )+%/ <((l—7"'yv)+)2—12) dr,

where (I — ryv)" = max{0,] — ryv}.
We define the modified Lagrangian functional M (v, 1) on the space W4 () x
Ly(T) as

(6)  M(v,l) = iTI}LfK(’U,l,m) = J(v) + %/ <<(l — rvv)+)2 - l2) dr.

— J() + 2i inf /F<(l—|—rm)2 —12) dr

It can be shown that the functional M (v,l) is convex with respect to v for
a fixed [ and is concave with respect to ! for a fixed v. Moreover, M (v,l) is
Gateaux differentiable in both its variables v and [. Furthermore, the Gateaux
derivatives V, M (v,1) and V;M (v,1) satisfy the equalities

(VoM (v, 1), h) = a(v, ) — (f,h) — /F(z ) thdD Wh e WAQ),

(VZM(U,Z),G)ZE/((l—r’yv)+—l)0df Vo e Ly(1),
rJr

where
a(v, h) = / VoVhdQ, (f.h)= /thdQ.
Definition. A point (v*,1*) € W3 (Q) x Lo(T) is called a saddle point of the
modified Lagrangian functlonal M (v, 1) if
M(v*, 1) < M(v", ") < M(v,0%)  Y(v,1) € W5(Q) x La(I).
Let us define the functional

M) = irI}fM(v,l) = irv}fiTr'lsz(v, I,m).

Since
inf inf K(v,l,m) = inf inf K(v,,m),

we get o o

M(l) = inf inf K(v,1,m)
1 2 9
17r711fW1?£m{J( )+2—/((l+rm) l)df}

:inf{ mf J(v /lmdF+ /deI‘}
m 7'}/’[) m
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(7) :igf{x(m)+Lzmdr+;Am2dr},

where x(m) =inf_., <, J(v).

It is easy to show that x(m) is a convex function (see [9, 1]) and x(m) # —oo
for all m € Lo(I"). Thus, the functional M(/) has the following two representa-
tions:

8) M(1) :irvlf{J(v)+21T/ <((l—r’yv)+>2 —z2) dF},
9) M(l):inf{x(m)+/lmdF+;/Fm2dF}.

Since the expression x(m) + [pimdl + % [ m*dl is a strongly convex func-
tional with respect to m € La(T'), the 1nﬁmum in problem (9) is attained at a
unique element m(l) for an arbitrary fixed [ € Lo(T).

Theorem 2.1. Problem (8) is solvable for an arbitrary fized | € Lo(T).
Proof. Since the problem

—vyv <m

{ J(v) — min,

is solvable under arbitrary m € Lo(T") (cf. [1]), we can define

v(l)=arg min J(v) Ve Ly(T).
—v<m(l)

We then have
M) = J(v(l)) + /Flm(l)df‘ + g/r(m(l))2 dl' = K(v(1),1,m(1)).

From (3), we get

inf{J( + o~ inf / l+7rm) —z)dr}

2r —yv<m

- irvlf{J( )+%/ (((lmu)+) 12) dF}

= M(I) = infinf K(v,l,m) = inf inf K(v, [, m)

(10) = I + 5 [ (@ rm@)? =) ar.
We will now show that
(11)
J(v(l))%—%/F((l+rm(l))2—l2)df = Jw()+ ;r W13)f<m/F((ljurm)Q—F)dr.

For our proof we will use a contradiction. Suppose we had

J(v(l))—&—%/F((l—&—rm(l))z—lQ)dF > J(v()+ inf /F((l+rm)2—12)dr;

27" —yv(l)<m
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that is,

/((z +rm(1))* —1?)dl' > inf /((l +rm)? —1%)dl.
r —yv(l)<m Jp
We then have

inf {J(v) + LI /((z +rm)? —1%) dr}

v r

2r —yv<m

1 2 2
Z/F((H-rm(l)) _2)dr

i : 2 _ g2
> (o) + 5 _int /F ({1 + rm)? — 12) dT

= M(l) = J(u(l)) +

zigf{J(v)—kl inf /F((z+rm)2—12)dr},

2r —yv<m

which is a contradiction, and, hence, (11) holds.
It follows from (10) and (11) that problem (8) is solvable and

v(l) = argmin {J(v) + %/F <((l - mv)+)2 - 12) dF}. -

Remark 2.2. Theorem 2.1 was proved in [1] for [ € (L(T))* only.

Consider the problem
M(l) — Inax,
(12) { L e Ly(D),
which is called the dual of problem (1).
Let us define the functional
M(v) = sup M(v,l) Vo e Wi(Q).
leLy(T)

Suppose that v € G. Then K(v,1,0) = J(v) for all I € Ly(T"), and, thus, we
have
M(v,l) = inf K(v,l,m) < J(v) YveK.

meLy(T)

Hence, we get

(13) M(v) = sup M(v,l) < J(v) YveK.
leLy(T)

If —yv <m a.e. on I', then we have
K(v,0,m) = J(v) + g / m?drl.
r

Therefore, we obtain
M(v,0) = inf K(v,0,m)= inf K(v,0,m)

meLy(T) —yv<m

= inf {J(v)—l—r/deF}
—yv<m r

[\
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= J()+~ int /m2 dr > J(v) v e WiQ).
2 —yv<m Jp
We then have
(14) M(v) = sup M(v,1) > M(v,0) > J(v) Yv e Wi (Q).
1E€Lo(T)
It follows from (13) and (14) that
(15) M(v) = J(v) WYveK.

‘We now consider the functional
= _ [ J)+ [plmdDl, if —yv<mae onl,
K(v,l,m) = { +00 otherwise.

One can easily see that

inf K(v,l,m) = J(v)+ / Imdl = L(v,l) VI € (Lx(T))",
meLs(T) r
where L(v,[) is the quantity appears in (4), and

K(v,l,m) > K(v,l,m),
which implies
M(v,1) > L(v,l) VI € (Lo(T))".

Hence, we get M(v) > L(v), where L(v) = SUPe(L, (ry)+ L(v,1).

If v € K, then

(16) L(v)= sup L(v,l)= sup {J(v) — / lyv dI‘} = +o0,
le(Lo(T))+ le(Lo(T))+ r
and, thus, M(v) = +oo Vv & K. From (15) and (16), we have

] JWw), ifvek,
M(v) = { 400 otherwise.

Hence, problem (1) can be presented as

M(v) — min,
(17) { ve Wi (Q).

It is obvious that

inf  sup M(v,l) > sup inf  M(w,l),

vEW; () 1€ Ly(T) €Ly (T) vEWS (Q)
18 inf M(v) > sup M().
(18) vEWS (Q) (®) leLy(T) (

Suppose that we have equality
M(v") = M(I")

for some v* € W3 (Q) and [* € Ly(T"). Then from (18), we can see that v* and
[* are solutions of problems (17) and (12), respectively.
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It is easy to show that (v*,1*) is a saddle point of the modified Lagrangian
functional M (v,1).
Theorem 2.3. In order that (v*,1*) € W}(Q) x La(T') is a saddle point of
M (v,1) in (6), it is necessary and sufficient for v* to be a solution of Signorini
problem (1) and for all m € Lo(T") the inequality

x(m) +/l*maT+ C/m2dF > x(0)
r 2 Jr

must be fulfilled.

Proof. Let (v*,1*) € W}(Q) x La(T') be a saddle point of M (v,1). This means
that

sup M(v*,l) = M(v*,1*) = inf M(v,1*),
leLy(I) @0 ( ) veEWL(Q) (v, %)

(19) M(v") = M(1"),

from which and (18), we can see that v* is a solution of problem (17) and I* is
a solution of problem (12), respectively. Hence, we get

M(I%) = M(v) = min J(v) = x(0),

which means that

-
inf * T r 2 Tl — .
méi(p){X(m)*/Fl md —|—2/Fm d } x(0);
that is,
X(m)+/l*mdf+g/m2dI‘2X(0) Vm € Ly(T).
r r

Let v* be a solution of problem (17) and

x(m) +/Fl*mdr + g/er dl' > x(0) Vm € Ly(I).
We then have
M(*)= inf {X(m)+/l*mdf+;/m2df} > x(0) = M(v*).
r r

meLy(T)
Since M(v) > M(l) V(v,1) € W}(Q) x La(T'), we get
M(v*) = M(I).
It is obvious that

inf M(v,l*) < M@*, ") < sup M(v*,1).
veW3 (Q) leL(T)

Therefore, we obtain

inf M, 0l*)=M@"1*)= sup M((v*,1);
vEW;3(Q) @) ( ) 1€L>(T) @0
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that is,

M(v*,1) < M(v*,1*) < M(v,1*) VY(v,1) € W3 (Q) x Lo(T). O
Theorem 2.4. Let (v*,1*) € W1(Q) x (La(T'))T be a saddle point of the clas-
sical Lagrangian functional L(v,l) given in (4). Then (v*,1*) is a saddle point
of modified Lagrangian functional M (v,1) in (6).

Proof. We have

L(v*,1) < L(v*,1*) < L(v,1*) ¥(v,1) € Wa(Q) x (Lo(I')) ™.

This means

sup L(v*, 1) =L(*,I") = inf L(v,1"),
le(Ly(I))+ @0 ( ) vEWL () (v, %)

L(v*) = L(v",1") = L"),

where
Liv)= sup L(v,1) Yve W) (),
le(La ()
L()= inf L(v,l) Ve (Ly(T)*.
L(1) et o (v, 1) (L2(T))

Taking into account that v* is a solution of problem (1) we have
L(v*)= sup {J(v*) - / [yv* dF} = J(v*) = x(0).
le(L2(T))+ r
Furthermore, we have

L") = inf L(v,I*

L) = nf | L)
= inf inf  K(v,l*,m)
vEW}(Q) meLy(T)

= inf inf  K(v,l*,m)
meLz(T) veW (Q)

= inf inf {J(v*)—i—/l*mdf}
m—yv<myeWi(Q) T

— inf Imdl.

0) = inf I* mdl’
x(0) méi(r){)‘(mH/F m }

x(m) —|—/Fl* mdl' > x(0) Vm e Ly(T).

Hence, we get
or

Since

X(m)—l—/l*mdl“—i—g/m2dl“zx(m)+/l*mdl“2x(0),
r r r
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it follows from Theorem 2.3 that (v*,l*) is a saddle point of M (v,1). O
Theorem 2.5. Let (v*,1*) be a saddle point of the modified Lagrangian func-
tional M(v,1) in (6). Then (v*,1*) is a saddle point of the classical Lagrangian
functional L(v,1) given in (4).

Proof. Let us show that —I* € 9x(0), where dx/(0) is the subdifferential of the
convex function x(m) at the point zero, which means

x(m) — x(0) > —/Fl*de‘ Vm € Lo(T).

We will give the proof via a contradiction. Suppose that we had —I* & 9x/(0).
Then there exists an m € Ly(T") such that

x(m) —|—/Fl* mdl' < x(0).

Let ¢ = x(0)—x(m)— [ I* mdl > 0 and let m(\) = Am+(1—X)-0, VA € (0, 1).
From Theorem 2.3, we have

X+ [mdr+ L [ w2 ar > x0) e L)
r r
Therefore, if m = A\, we get

2
x(0) < +/\/l**dr+1 m? dl
T

2
gAx(m)+(1—A)X(0)+A/l*mdr+%/m2dr
r r

=) (X(m) — x(0) +/Fl*md1“> + x(0) + Tf/rrrﬂ dr,

and
rA2
A (x(O) — x(m) —/l*mdl") <= [ m?dl,
I 2 I
as well as
A
0 < ¢=x(0) = x(m) —/l*mdr < % m2dr.
T T

By letting A = 0 in the last inequality set, we obtain the contradiction 0 < 0.
Hence, we must have —I* € 9x(0), which implies

(20) x(m) + / I*mdl > x(0) VYm € Ly(T).
r
It follows from (20) that we get

/ mdl > x(0) = x(m) 20 Vm € (L(I)",
r
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and, hence, [* € (L2(T"))". We then have

L(I*)= inf L(v,0I*)= inf {X(m)+/Fl*mdF}.

veW () vEWS(Q)
From (20), we get
L(I*) = x(0).

Furthermore, taking into account that v* is a solution of problem (1), we have

L(v*)= sup L(v* )= sup {J(U*) — / lyv* dF}
le(La(T)+ le(La(T)+ r

= J(v") = x(0).

Therefore, we obtain

that is,
L(v™) = L(I"),
which implies that (v*,{*) is a saddle point of L(v,1). O

3. Conclusion and discussion

As we mentioned, other well-known methods based on classical Lagrangian
functionals do not guarantee the convergence to a saddle point in semicoercive
variational inequality. Theorems 2.4 and 2.5 allow to consider corresponding
methods based on modified Lagrangian functionals. For example, the Uzawa
method in [1] can be used, and the algorithm can be described as follows:

Choose an arbitrary initial point [V € VV21/2 (T), that is the trace on T of a
function u® € W3 (Q).

U-Stepl: at the kth step (k=0,1,...), set

21 w1 =arg min  M(v, ).
(21) 8, (v,17)

U-Step2: find [**! by the formula

P = (18 — Pt

According to Theorem 2.1, the points u* (k =1,2,...) defined in (21) all exist.
They are defined uniquely if u* € W2(2) (cf. [1]). However, to find the element
uF*1 at U-Step 1 of the Uzawa algorithm, one must minimize the functional
M (v,1%), which is not strongly convex with respect to the variable v.

Woo et al. [8] introduced a method for solving problem (1) based on the
combination of the modified Lagrangian functional with the proximal regular-
ization. That algorithm can be summarized as follows:

Given an arbitrary starting point (u°,1°) € W4 (Q) x W21/2 (T), the sequence
{(uF,1¥)} is generated by
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W-Stepl: at the kth step (k =0,1,...), the functional
1
Ly(v) = M(v,1*) + llv = WPl Yo e Wa(Q)

is constructed and the point

uF T =arg min  Ly(v)

vEW(Q)
is determined.
W-Step2: the dual variable I**1 is corrected by the formula
ML= (IF — pyuf T
The regularizing addition %Hv — uk||%2(m in W-Step 1 provides the strong
convexity of the minimized functionals Ly (v). This guarantees that each of the

auxiliary problems
{ Li(v) — min,

v e WHQ)
has a unique solution, which can be found by efficient optimization methods.
Under the assumptions

o uF e W2(Q), k=1,2,...,
o ||[u* ||z < O, where C > 0 is a constant,
w3 (Q)

one can show that the uniqueness of the saddle point of the Lagrangian func-
tional L(v,l) or M(v,l) and the convergence in Wi (2) x Ly(T') to a unique
saddle point of the sequence {(u*,1¥)} generated by the W-Steps 1 and 2.

The method of Woo et al. combined with the finite element method was
introduced in [7].
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