• Title/Summary/Keyword: Lagrangian method

Search Result 722, Processing Time 0.028 seconds

An activity based bit allocation method for still picture coding (활성도 척도에 근거한 정지 영상 부호화에서의 비트 할당 기법)

  • 김욱중;이종원;김성대
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.23 no.6
    • /
    • pp.1461-1470
    • /
    • 1998
  • Bit allocation or quantizer assigning problem is a basic and essential issue in lossy picture coding. It could be represented as minimizing overall distortion with the given constraint that total bits should not exceed allowed bit-budget. Optimal solution can be found by Lagrangian method. However this method needs much computational time and memory. This paper presents an approximation method that uses the activity measure. The comparison between the existing activity measuring techniques are made, and mapping function from activity value to the quantizer is proposed. Under MPEG-1 Intra coding situation, simulations show almost identical results compared to the optimal ones obtained by Lagrangian method with reduced computational time.

  • PDF

A Study on Relation of Needle-Nozzle Flow of Piezo-driven Injector by using Eulerian-Lagrangian Multi-phase Method (Eulerian-Lagrangian 다상 유동해석법에 의한 피에조인젝터의 니들-노즐유동 상관성 연구)

  • Lee, Jin-Wook;Min, Kyoung-Doug
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.18 no.5
    • /
    • pp.108-114
    • /
    • 2010
  • The injection nozzle of an electro-hydraulic injector is being opened and closed by movement of a injector's needle which is balanced by pressure at the nozzle seat and at the needle control chamber, at the opposite end of the needle. In this study, the effects of needle movement in a piezo-driven injector on unsteady cavitating flows behavior inside nozzle were investigated by cavitation numerical model based on the Eulerian-Lagrangian approach. Aimed at simulating the 3-D two-phase flow behavior, the three dimensional geometry model along the central cross-section regarding of one injection hole with real design data of a piezo-driven diesel injector has been used to simulate the cavitating flows for injection time by at fully transient simulation with cavitation model. The cavitation model incorporates many of the fundamental physical processes assumed to take place in cavitating flows. The simulations performed were both fully transient and 'pseudo' steady state, even if under steady state boundary conditions. As this research results, we found that it could analyze the effect the pressure drop to the sudden acceleration of fuel, which is due to the fastest response of needle, on the degree of cavitation existed in piezo-driven injector nozzle.

Improved Trajectory Calculation on the Semi-Lagrangian Advection Computation (Semi-Lagrangian 이류항 계산의 추적법 개선)

  • Park, Su-Wan;Baek, Nak-Hoon;Ryu, Kwan-Woo
    • The KIPS Transactions:PartA
    • /
    • v.16A no.6
    • /
    • pp.419-426
    • /
    • 2009
  • To realistically simulate fluid, the Navier-Stokes equations are generally used. Solving these Navier-Stokes equations on the Eulerian framework, the non-linear advection terms invoke heavy computation and thus Semi-Lagrangian methods are used as an approximated way of solving them. In the Semi-Lagrangian methods, the locations of advection sources are traced and the physical values at the traced locations are interpolated. In the case of Stam's method, there are relatively many chances of numerical losses, and thus there have been efforts to correct these numerical errors. In most cases, they have focused on the numerical interpolation processes, even simultaneously using particle-based methods. In this paper, we propose a new approach to reduce the numerical losses, through improving the tracing method during the advection calculations, without any modifications on the Eulerian framework itself. In our method, we trace the grids with the velocities which will let themselves to be moved to the current target position, differently from the previous approaches, where velocities of the current target positions are used. From the intuitive point of view, we adopted the simple physical observation: the physical quantities at a specific position will be moved to the new location due to the current velocity. Our method shows reasonable reduction on the numerical losses during the smoke simulations, finally to achieve real-time processing even with enhanced realities.

Buckling Strength of Orthotropic Rectangular Plate with a Longitudinal Stiffener under In-plane Linearly Distributed Loads (면내 선형분포하중을 받는 수평보강재가 설치된 직교이방성판의 좌굴강도)

  • Jung, Jae Ho;Yoon, Soon Jong;Cho, Sun Kyu
    • Journal of Korean Society of Steel Construction
    • /
    • v.10 no.3 s.36
    • /
    • pp.393-406
    • /
    • 1998
  • In this study buckling behavior of orthotropic plate with a longitudinal stiffener under in-plane linearly distributed loads is investigated. All edges of plate are assumed to be simply supported and the stiffener is considered as a beam element. For the equation of buckling analysis Rayleigh-Ritz method is employed. The upper limit of the critical stress at various location of stiffener is determined by using Lagrangian multiplier method. Buckling analysis is performed for the various position of stiffener and for the various width ratios between plate and stiffener. The parametric study shows that, when four edges of plate are simply supported, the most effective position for a longitudinal stiffener is at the location of which the upper limit of the stress is the maximum.

  • PDF

Study on the Effect of Design Parameters of the Vane Type Inertial Separator Using Commercial CFD Code (상용 CFD 프로그램을 사용한 베인형 관성분리기의 설계인자 영향 검토)

  • Lee, Dap-Yeon;Lew, Jae-Moon
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.54 no.6
    • /
    • pp.470-475
    • /
    • 2017
  • Since the intake air of gas turbine engine of marine purpose contains water particles, inertial separator for separating the air and water particles are provided. Saw type and wave type separator are now used to separate inflow water particle from the gas. In this paper, the design parameters of saw type separator are studied by numerical simulations. Using the commercial CFD program, Star-CCM+, Lagrangian-Eulerian method was used to perform the analysis of two phase flow of the mist in the air. This method solves Reynolds-Averaged Navier-Stokes equations in Eulerian framework for the continuous phase, while solves equation of motion for individual particles in Lagrangian framework. Lagrangian multiphase method was applied to monitor the particles of different sizes and shapes and to verify collision between particles by chasing particles. Water particles were injected through injectors located at the inlet of the separator and escape mode was used which assumes that the particles attached on the surface of inertial separator were removed from the simulation, effectively escaping the solution domain. Through the numerical computations with the inlet condition of constant water particle size in the wetness fraction of 85%, efficiency of eliminating the water particle and the pressure drop between the inlet and outlet were examined.

Numerical Analysis for the Piston-Driven Intake Flows using the Finite Element Method (피스톤에 의해 유입되는 유동에 대한 유한요소법을 이용한 수치해석)

  • Choi J. W.;Park C. K.
    • Journal of computational fluids engineering
    • /
    • v.4 no.2
    • /
    • pp.39-46
    • /
    • 1999
  • The FVM(Finite Volume Method) have been used mainly for the flow analyses in the piston-cylinder. The objective of the present study is to analyze numerically the piston-driven intake flows using the FEM(Finite Element Method). The FEM algorithm used in this study is 4-step time-splitting method which requires much less execution time and computer storage than the velocity-pressure integrated method and the penalty method. And the explicit Lax-Wendroff scheme is applied to nonlinear convective term in the momentum equations to prevent checkerboard pressure oscillations. Also, the ALE(arbitrary Lagrangian Eulerian) method is adopted for the moving grids. The calculated results show good agreement in comparison with those by the FVM and the experimental results by the LDA.

  • PDF

Behaviors of Laminated Composite Folded Structures According to Ratio of Folded Length (곡절 길이비에 따른 복합적층 절판 구조물의 거동)

  • Yoo Yong-Min;Yhim Sung-Soon;Chang Suk-Yoon
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.19 no.3 s.73
    • /
    • pp.223-231
    • /
    • 2006
  • This study deals with behavior characteristics of laminated composite folded structures according to ratio of folded length based on a higher-order shear deformation theory. Well-known mixed finite element method using Lagrangian and Hermite shape interpolation functions is a little complex and have some difficulties applying to a triangular element. However, a higher-order shear deformation theory using only Lagrangian shape interpolation functions avoids those problems. In this paper, a drilling degree of freedom is appended for more accurate analysis and computational simplicity of folded plates. There are ten degrees of freedom per node, and four nodes per element. Journal on folded plates for effects of length variations is not expressed. Many results in this study are carried out according to ratio of folded length. The rational design is possible through analyses of complex and unpredictable laminated composite folded structures.

Formulation of Mass Conservation and Linear Momentum Conservation for Saturated Porous Media in Arbitrary Lagrangian Eulerian(ALE) Description (포화된 다공질 매체의 질량 보존과 운동량 보존에 대한 Arbitrary Lagrangian Eulerian(ALE) 정식화)

  • Park, Tae-Hyo;Jung, So-Chan;Kim, Won-Cheul
    • Journal of the Korean GEO-environmental Society
    • /
    • v.4 no.1
    • /
    • pp.5-10
    • /
    • 2003
  • The solids and the fluids in porous media have a relative velocity to each other. Due to physically and chemically different material properties and their relative velocity, the behavior of saturated porous media is extremely complicated. Thus, in order to describe and clarify the deformation behavior of saturated porous media, constitutive models for deformation of porous media coupling several effects need to be developed in frame of Arbitrary Lagrangian Eulerian(ALE) description. The aim of ALE formulations is to maximize the advantages of Lagrangian and Eulerian elements, and to minimize the disadvantages. Therefore, this method is appropriate for the analysis of porous media which are considered for the behavior of the solids and the fluids. For this reason, mass balance equations for saturated porous media are derived here in ALE description frames. ALE formulations of mass conservation for the solid phase and the fluid phase are expressed. Then, linear momentum balance equation for porous media as multiphase media is expressed.

  • PDF

Nonlinear Liquid Sloshing Analysis in a Cylindrical Container by Arbitrary Lagrangian-Eulerian Approach (Arbitrary Lagrangian-Eulerian 기법에 의한 원통형 유체저장구조물 내부유체의 비선형 슬러싱 해석)

  • Kwon, Hyung-O;Cho, Kyung-Hwan;Kim, Moon-Kyum;Lim, Yun-Mook
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.9 no.2 s.42
    • /
    • pp.71-80
    • /
    • 2005
  • The solution to a liquid sloshing problem is challenge to the field of engineering. This is not only because the dynamic boundary condition at the free surface is nonlinear, but also because the position of the free surface varies with time in a manner not known a priori. Therefore, this nonlinear phenomenon, which is characterized by the oscillation of the unrestrained free surface of the fluid, is a difficult mathematical problem to solve numerically and analytically. In this study, three-dimensional boundary element method(BEM), which is based on the so-called an arbitrary Lagrangian-Eulerian(ALE) approach for the fluid flow problems with a free surface, was formulated to solve the behavior of the nonlinear free surface motion. An ALE-BEM has the advantage to track the free surface along any prescribed paths by using only one displacement variable, even for a three-dimensional problem. Also, some numerical examples were presented to demonstrate the validity and the applicability of the developed procedure.