• Title/Summary/Keyword: Lagrange equation of motion

Search Result 146, Processing Time 0.023 seconds

Flexible 효과를 고려한 다물체 시스템의 동역학적 해석에 관한 연구

  • 최승렬;한창수
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 1992.10a
    • /
    • pp.349-353
    • /
    • 1992
  • The purpose of this paper is to develop methods for the dynamic analysis of multibody system that consist of interconnected rigid and deformable component. The equations of motion are derived by using the Lagrange's equation and finite element theory for the elastic mechanism systems. The type of equation of motion is the differential algebraic equation included kinematic nonlinear algebraic equation. The generalized coordinate partitioning method is used for solving this equation. To show the validity of this analysis solver, couple of models were canalized and those results were compared with the commercial package(ADAMS).

A Study on the modeling for the control of magnetic levitation stage (자기부상 스테이지의 제어를 위한 모델링에 관한 연구)

  • 남택근;김용주
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.27 no.7
    • /
    • pp.862-871
    • /
    • 2003
  • In this paper, we addressed a modeling for the magnetic levitation stage. This planar magnetic levitator employs four permanent magnet liner motors. Each motor generates vertical force for suspension against gravity, as well as horizontal force for propulsion. Therefore. this stage can generate six degrees of freedom motion by the combination of forces. We derived a mechanical dynamics equation using Lagrangian method and electromechanical dynamics equation by using Co-energy method. Based on the derived dynamics, we can analyze the stage motion that is subject to the input currents and forces.

Swing Motion Analysis of the Container Crane Headblock (콘테이너 크레인의 헤드블록 횡동요 해석)

  • 조대승
    • Journal of KSNVE
    • /
    • v.7 no.5
    • /
    • pp.765-772
    • /
    • 1997
  • This paper presents the swing motion analysis of the container crane headblock with the passive control device using hydraulic motors and anti-swing ropes. The device hauls at the headblock to opposite direction of its swing motion using the tension difference between anti-swing ropes connected to the headblock. To consider this control mechanism, the headblock is modelled as the rigid bar suspended by two hoist ropes at the overhead trolley and its non-linear equation of motion is derived using Lagrange's equation. Some numerical experiments using the equation are carried out to investigate the swing motion characteristics of the headblock under the variation of geometric relation among the cargo handling components and to evaluate the performance of the anti-swing device.

  • PDF

Swing Motion Analysis of the Container Crane Headblock (콘테이너 크레인의 헤드블록 횡동요 해석)

  • 조대승
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 1997.04a
    • /
    • pp.153-159
    • /
    • 1997
  • This paper presents the swing motion analysis of the container crane headblock with the passive control device using hydraulic motors and anti-swing ropes. The device hauls at the headblock to opposite direction of its swing motion using the tension difference between anti-swing ropes connected to the headblock. To consider this control mechanism, the headblock is modelled as the rigid bar suspended by two hoist ropes at the overhead trolley and its non-linear equation of motion is derived using Lagrange's equation. Some numerical experiments using the equation are carried out to investigate the swing motion characteristics of the headblock under the variation of geometric relation among the cargo handling components and to evaluate the performance of the anti-swing device.

  • PDF

Symbolic Generation of Dynamic Equations and Modeling of a Parallel Robot (기호 운동방정식 생성과 병렬형 로봇 모델링)

  • Song, Sung-Jae;Cho, Byung-Kwan;Lee, Jang-Moo
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.20 no.1
    • /
    • pp.35-43
    • /
    • 1996
  • A computer program for automatic deriving the symbolic equations of motion for robots using the programming language MATHEMATICA has been developed. The program, developed based on the Lagrange formalism, is applicable to the closed chain robots as well as the open chain robots. The closed chains are virtually cut open, and the kinematics and dynamics of the virtual open chain robot are analyzed. The constraints are applied to the virtually cut joints. As a result, the spatial closed chain robot can be considered as a tree structured open chain robot with kinematic constraints. The topology of tree structured open chain robot is described by a FATHER array. The FATHER array of a link indicates the link that is connected in the direction of base link. The constraints are represented by Lagrange multipliers. The parallel robot, DELTA, having three-dimensional closed chains is modeled and simulated to illustrate the approach.

An Accelerated Iterative Method for the Dynamic Analysis of Multibody Systems (반복 계산법 및 계산 가속기법에 의한 다물체 동역학 해법)

  • 이기수;임철호
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.16 no.5
    • /
    • pp.899-909
    • /
    • 1992
  • An iterative solution technique is presented to analyze the dynamic systems of rigid bodies subjected to kinematic constraints. Lagrange multipliers associated with the constraints are iteratively computed by monotonically reducing an appropriately defined constraint error vector, and the resulting equation of motion is solved by a well-established ODE technique. Constraints on the velocity and acceleration as well as the position are made to be satisfied at joints at each time step. Time integration is efficiently performed because decomposition or orthonormalization of the large matrix is not required at all. An acceleration technique is suggested for the faster convergence of the iterative scheme.

Dynamic Analysis of a 3-Phase BLDC Motor Considering Variation of an Air-Gap (공극의 시간변화를 고려한 3 상 BLDC 모터의 동특성 해석)

  • Park, Ki-Sun;Im, Hyung-Bin;Chung, Jin-Tai
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.33 no.10
    • /
    • pp.1038-1044
    • /
    • 2009
  • In this study, vibrations of an electric motor are analyzed when the motor has the interaction between mechanical and electromagnetic behaviors. For this vibration analysis a 3-phase 8-pole brushless DC motor is selected. Vibrations of the motor are influenced by coupled electromechanical characteristics. The variation of air-gap induced by vibration has an influence on the inductance of the motor coil. To analyze dynamic characteristics of the rotor, we studied inductance by the variation of an air-gap. After obtaining the kinetic, potential and magnetic energies for the motor, the equations of motion are derived by using Lagrange's equation. By applying the Newmark time integration method to the equations, the dynamic responses for the displacements and currents are computed.

Resonance behavior of functionally graded carbon nanotube-reinforced composites shells with spinning motion and axial motion

  • Jia-Qin Xu;Gui-Lin She
    • Steel and Composite Structures
    • /
    • v.49 no.3
    • /
    • pp.325-335
    • /
    • 2023
  • The missile is affected by both spinning and axial motion during its movement, which will have a very adverse impact on the stability and reliability of the missile. This paper regards missiles as cylindrical shell structures with spinning and axial motion. In this article, the forced vibration of carbon nanotube-reinforced composites (CNTRCs) cylindrical shells with spinning motion and axial motion is investigated, in which the clamped-clamped and simply-simply supported boundary conditions are considered. The displacement field is described by the first-order shear theory, and the vibration equation is deduced by using the Euler-Lagrange equation, after dimensionless processing, the dimensionless equation of motion is obtained. The correctness of this paper is verified by comparing with the results of the existing literature, in which the simply-simply supported ends are taken into account. In the end, the effects of different parameters such as spinning velocity, axial velocity, carbon nanotube volume fraction, length thickness ratio and load position on the resonance behavior of cylindrical shells are given. It can be found that these parameters can significantly change the resonance of axially moving and rotating moving CNTRCs cylindrical shells.

Dynamic Characteristic of Coupled Pre-twist Blade and Shaft System (초기 비틀림각이 고려된 블레이드-축 통합 시스템의 동적 특성)

  • Lee, Hwan-Hee;Song, Ji-Seok;Na, Sung-Soo
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.22 no.7
    • /
    • pp.659-666
    • /
    • 2012
  • A nonlinear dynamic model for the shaft-disk-blade unit is developed in this study. In this regard, the rotating flexible blade, with a pre-twist angle, attached to a rigid disk driven by a shaft which is flexible in torsion is developed. The rotor-blade coupled model is derived using Lagrange equation in conjunction with the assumed mode method to discretize the blade deformation. The equations of motion are analyzed based on the small deformation theory for the blade and shaft torsional deformation to obtain the system natural frequencies for various system parameters.