• Title/Summary/Keyword: Lagrange Multiplier

Search Result 191, Processing Time 0.027 seconds

Computer-Aided Design of Involute Cylindrical Gears for Power Transmission (컴퓨터를 이용한 동력전달용 인벌류우트 원통치차의 설계)

  • 정태형;김민수
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.14 no.3
    • /
    • pp.594-602
    • /
    • 1990
  • A computer-aided design system of involute cylindrical gears(spur and helical gears) for power transmission is developed, in which the volume of a gear unit is minimized with satisfying various design constraints. As the design constraints, bending strength and pitting resistance of AGMA 218.01, scoring of Dudley's flash temperature, contact ratio, and involute interference of pinion are considered and effective factors for strength calculation(life, reliability, hardness ratio, load distribution, velocity, etc.) are also included. This complicated nonlinear optimization problem is solved by using ALM(Augmented-Lagrange-Multiplier) method with self scaling BFGS(Broydon-Fletcher-Goldfarb-Shanno) method employed for unconstrained optimization programming. This design method can be easily applied to designing power transmission gear unit in the machines of various kinds. It is expected for the proposed method to be a contribution for an automated design of gear unit towards weight minimization, miniaturization and high strength of gear unit.

Adaptive Bit-loading Technique for BICM-OFDM Systems (BICM-OFDM 시스템을 위한 적응 비트 할당 기법)

  • Park, Dong-Chan;Kim, Suk-Chan
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.30 no.7C
    • /
    • pp.624-632
    • /
    • 2005
  • We consider an adaptive bit-loading technique for bit interleaved coded modulation-orthogonal frequency division multiplexing(BICM-OFDM) systems. By adjusting transmission parameter of each subcarrier adaptively depending on the subchannel state, the performance of OFDM system can be improved dramatically. In this paper, the number of bits for each subcarrier is allocated to minimize bit error rate keeping the constant throughput for the adaptive transmission technique of BICM-OFDM system which can be applied to real time transmission. Also, We use the discrete Lagrange multiplier method to get the optimum solution under the integer bit allocation constraint. Simulation results show that computational amount of the proposed bit allocation technique is not high and BICM-OfDM system using the proposed technique can get the SNR gain by 2$\~$3 dB over nonadaptive one.

A Linearization Method for Constrained Mechanical Systems (구속된 다물체 시스템의 선형화에 관한 연구)

  • Bae, Dae-Sung;Choi, Jin-Hwan;Kim, Sun-Chul
    • Proceedings of the KSME Conference
    • /
    • 2004.04a
    • /
    • pp.893-898
    • /
    • 2004
  • This research proposes an implementation method of linearized equations of motion for multibody systems with closed loops. The null space of the constraint Jacobian is first pre multiplied to the equations of motion to eliminate the Lagrange multiplier and the equations of motion are reduced down to a minimum set of ordinary differential equations. The resulting differential equations are functions of all relative coordinates, velocities, and accelerations. Since the coordinates, velocities, and accelerations are tightly coupled by the position, velocity, and acceleration level constraints, direct substitution of the relationships among these variables yields very complicated equations to be implemented. As a consequence, the reduced equations of motion are perturbed with respect to the variations of all coordinates, velocities, and accelerations, which are coupled by the constraints. The position, velocity and acceleration level constraints are also perturbed to obtain the relationships between the variations of all relative coordinates, velocities, and accelerations and variations of the independent ones. The perturbed constraint equations are then simultaneously solved for variations of all coordinates, velocities, and accelerations only in terms of the variations of the independent coordinates, velocities, and accelerations. Finally, the relationships between the variations of all coordinates, velocities, accelerations and these of the independent ones are substituted into the variational equations of motion to obtain the linearized equations of motion only in terms of the independent coordinate, velocity, and acceleration variations.

  • PDF

Kinematic Control of Redundant Robots in the Constrained Environment and Its Applicaiton to a Nozzle Dam Installation/Detachment Task in Nuclear Power Plants (구속된 환경에서의 여유자유도 로봇의 기구학적 제어와 원자력 발전소 노즐댐 장 /탈착작업에의 적용)

  • Park, Ki-Cheol;Chang, Pyung-Hun;Kim, Seung-Ho
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.20 no.12
    • /
    • pp.3871-3882
    • /
    • 1996
  • In this paper, a closed-form formulation for inverse kinematics of robot manipulators with kinematic redundancy under the constrained environment has been derived using the Kuhn-Tucker condition, the extended Lagrange multiplier method and the working set method. The proposed algorithm satisfies the necessaryand sufficient conditions for optimization subject to equality and inequality constraints. In addition, computationally efficient kinematic control methods have been proposed using differential kinemetics and gradient projection mehtod. The effectiveness of the proposed methods has been demonstrated with a 4-dof planar robot, and then a 7-dof spatial robot as a practical application to the nozzle dam task in the Nuclear Power Plant.

Optimal user selection and power allocation for revenue maximization in non-orthogonal multiple access systems

  • Pazhayakandathil, Sindhu;Sukumaran, Deepak Kayiparambil;Koodamannu, Abdul Hameed
    • ETRI Journal
    • /
    • v.41 no.5
    • /
    • pp.626-636
    • /
    • 2019
  • A novel algorithm for joint user selection and optimal power allocation for Stackelberg game-based revenue maximization in a downlink non-orthogonal multiple access (NOMA) network is proposed in this study. The condition for the existence of optimal solution is derived by assuming perfect channel state information (CSI) at the transmitter. The Lagrange multiplier method is used to convert the revenue maximization problem into a set of quadratic equations that are reduced to a regular chain of expressions. The optimal solution is obtained via a univariate iterative procedure. A simple algorithm for joint optimal user selection and power calculation is presented and exhibits extremely low complexity. Furthermore, an outage analysis is presented to evaluate the performance degradation when perfect CSI is not available. The simulation results indicate that at 5-dB signal-to-noise ratio (SNR), revenue of the base station improves by at least 15.2% for the proposed algorithm when compared to suboptimal schemes. Other performance metrics of NOMA, such as individual user-rates, fairness index, and outage probability, approach near-optimal values at moderate to high SNRs.

Global Oil Prices and Exchange Rate: Evidence from the Monetary Model

  • ZAFAR, Sadaf;KHAN, Muhammad Arshad
    • The Journal of Asian Finance, Economics and Business
    • /
    • v.9 no.1
    • /
    • pp.189-201
    • /
    • 2022
  • The study empirically examines the impact of monetary fundamentals along with global oil prices on the Pak-rupee exchange rate using the monthly data over 2001-2020. Employing the cointegrating vector autoregressive with exogenous variables (VARX) and vector error correction model with exogenous variables (VECMX), the study analyzes the impact of domestic monetary fundamentals while considering the foreign variables as weakly exogenous. In order to account for the structural breaks in the data, the Lagrange multiplier (LM) unit root test with two structural breaks has been used (Lee & Strazicich, 2003). The empirical results reveal that the domestic and foreign monetary variables significantly explain the exchange rate movements in Pakistan both in the long run and in the short run. The dynamic properties of the monetary model of exchange rate have been analyzed using the persistence profile analysis and generalized impulse response functions (GIRFs). The results reveal that the responses of shocks to domestic monetary fundamentals are consistent with the predictions of the monetary model of the exchange rate. Furthermore, being a net oil importer, a rise in global oil prices significantly depreciated the Pak-rupee exchange rate over the period of study. The global financial crisis (GFC) and pandemic (COVID-19) were also found to cause the Pak-rupee exchange rate depreciation.

Electrical Impedance Tomography for Material Profile Reconstruction of Concrete Structures (콘크리트 구조의 재료 물성 재구성을 위한 전기 임피던스 단층촬영 기법)

  • Jung, Bong-Gu;Kim, Boyoung;Kang, Jun Won;Hwang, Jin-Ha
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.32 no.4
    • /
    • pp.249-256
    • /
    • 2019
  • This paper presents an optimization framework of electrical impedance tomography for characterizing electrical conductivity profiles of concrete structures in two dimensions. The framework utilizes a partial-differential-equation(PDE)-constrained optimization approach that can obtain the spatial distribution of electrical conductivity using measured electrical potentials from several electrodes located on the boundary of the concrete domain. The forward problem is formulated based on a complete electrode model(CEM) for the electrical potential of a medium due to current input. The CEM consists of a Laplace equation for electrical potential and boundary conditions to represent the current inputs to the electrodes on the surface. To validate the forward solution, electrical potential calculated by the finite element method is compared with that obtained using TCAD software. The PDE-constrained optimization approach seeks the optimal values of electrical conductivity on the domain of investigation while minimizing the Lagrangian function. The Lagrangian consists of least-squares objective functional and regularization terms augmented by the weak imposition of the governing equation and boundary conditions via Lagrange multipliers. Enforcing the stationarity of the Lagrangian leads to the Karush-Kuhn-Tucker condition to obtain an optimal solution for electrical conductivity within the target medium. Numerical inversion results are reported showing the reconstruction of the electrical conductivity profile of a concrete specimen in two dimensions.

Multiscale Wavelet-Galerkin Method in General Two-Dimensional Problems (일반 형상의 2차원 영역에서의 멀티스케일 웨이블렛-갤러킨 기법)

  • Kim, Yun-Yeong;Jang, Gang-Won;Kim, Jae-Eun
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.26 no.5
    • /
    • pp.939-951
    • /
    • 2002
  • We propose a new multiscale Galerkin method based on interpolation wavelets for two-dimensional Poisson's and plane elasticity problems. The major contributions of the present work are: 1) full multiresolution numerical analysis is carried out, 2) general boundaries are handled by a fictitious domain method without using a penalty term or the Lagrange multiplier, 3) no special integration rule is necessary unlike in the (bi-)orthogonal wavelet-based methods, and 4) an efficient adaptive scheme is easy to incorporate. Several benchmark-type problems are considered to show the effectiveness and the potentials of the present approach. is 1-2m/s and impact deformation of the electrode depends on the strain rate at that velocity, the dynamic behavior of the sinter-forged Cu-Cr is a key to investigate the impact characteristics of the electrodes. The dynamic response of the material at the high strain rate is obtained from the split Hopkinson pressure bar test using disc-type specimens. Experimental results from both quasi-static and dynamic compressive tests are Interpolated to construct the Johnson-Cook model as the constitutive relation that should be applied to simulation of the dynamic behavior of the electrodes. The impact characteristics of a vacuum interrupter are investigated with computer simulations by changing the value of five parameters such as the initial velocity of a movable electrode, the added mass of a movable electrode, the wipe spring constant, initial offset of a wipe spring and the virtual fixed spring constant.

A Mixed Variational Principle of Fully Anisotropic Linear Elasticity (이방성탄성문제의 혼합형변분원리)

  • 홍순조
    • Computational Structural Engineering
    • /
    • v.4 no.2
    • /
    • pp.87-94
    • /
    • 1991
  • In this paper, a mixed variational principle applicable to the linear elasticity of inhomogeneous anisotropic materials is presented. For derivation of the general variational principle, a systematic procedure for the variational formulation of linear coupled boundary value problems developed by Sandhu et al. is employed. Consistency condition of the field operators with the boundary operators results in explicit inclusion of boundary conditions in the governing functional. Extensions of admissible state function spaces and specialization to a certain relation in the general governing functional lead to the desired mixed variational principle. In the physical sense, the present variational principle is analogous to the Reissner's recent formulation obtained by applying Lagrange multiplier technique followed by partial Legendre transform to the classical minimum potential energy principle. However, the present one is more advantageous for the application to the general anisotropic materials since Reissner's principle contains an implicit function which is not easily converted to an explicit form.

  • PDF

Development of Strength Estimation and Design System of Power Transmission Bevel Gears(I) -A Disign Method Based on Strength and Durability in AGMA Standards- (동력전달용 베벨기어의 강도평가 및 설계시스템 개발 (1) -AGMA규격 강도기준설계법-)

  • 정태형;변준형;김태형
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.18 no.3
    • /
    • pp.591-599
    • /
    • 1994
  • A design system for power transmission bevel gears(straight, zerol, and spiral) is developed, in which the strength and durability of bevel gears can be estimated and the size of bevel gears can be minimized by introducing optimal techniques. The size of bevel gear pair as the object function to be minimized is the volume of equivalent spur gear pair at mean normal section, and the design variables to be determined are considered as the number of teeth, face width, diametral pitch, and spiral angle in spiral bevel gear. The strength(bending strength, pitting resistance) according to the AGMA standards, geometrical quantities, and operating characteristics(interference of pinion, contact ratio, etc.) are considered as the constraints in design optimization. The optimization with these constraints becomes nonlinear problem and that is solved with ALM(Augmented Lagrange Multiplier) method. The developed design method is applied to the example designs of straight, zerol, and spiral bevel gears. The design results are acceptable from the viewpoint of strength and durability within the design ranges of all other constraint, and the bevel gears are designed toward minimizing the size of gear pair. This design method is easily applicable to the design of bevel gears used as power transmitting devices in machineries, and is expected to be used for weight minimization of bevel gear unit.