• Title/Summary/Keyword: Lactobacillus sp.

Search Result 264, Processing Time 0.043 seconds

Isolation and Characterization of Lactobacillus sp. FF-3 for Probiotics Production from Korean Dongchimi. (동치미 유래 생균제로서 가능성이 있는 Lactobacillus sp. FF-3의 분리와 특성)

  • 정원복;서원석;차재영;조영수
    • Food Science and Preservation
    • /
    • v.10 no.3
    • /
    • pp.406-410
    • /
    • 2003
  • For selection of lactic acid bacteria for probiotics, we have examined isolated strains from Korean Dongchimi to assess the acid, bile, and pancreatic tolerance and the growth inhibition on the pathogens. Especially, a kind of isolated strains, FF-3 showed the highest resistancy to both of HCl and bile salt, as well as the highest inhibitory activities against Salmonella sp. and Escherichia coli. Further the bacteriocin of FF-3 showed relatively wide range of inhibition spectrum against gram positive and some gram negative bacterias. By using 16s rDNA sequencing method, FF-3 of the selected lactic acid bacteria were found to be identified as genus Lactobacillus.

Antibacterial Activity by Lactobacillus bulgaricus SP5 against Pathogenic Bacteria (병원성 미생물에 대한 Lactobacillus bulgaricus SP5의 항균활성)

  • Kim, Woan-Sub;Yang, A-Reum
    • Korean Journal of Organic Agriculture
    • /
    • v.24 no.3
    • /
    • pp.497-510
    • /
    • 2016
  • This study was carried out to get basic resources for the industrial use of Lactobacillus bulgaricus SP5. The antibacterial activity of the supernatant obtained from Lactobacillus bulgaricus SP5 was tested against the pathogenic bacteria such as Escherichia coli KCCM 11234, Salmonella enteritidis KCCM 3313, Salmonella enteritidis KCCM 12021, and Salmonella typhimurium KCCM 40253. The supernatant of L. bulgaricus SP5 showed antibacterial activity against tested pathogenic bacteria. The antibacterial activity was examined after adjusting pH and heat treatment of supernatant. Heat treatment of supernatant had antibacterial activity against pathogenic bacteria at all temperature. However, pH changes showed no antibacterial activity. Antibacterial activity of the supernatant was confirmed to be due to organic acids (lactic, acetic, phosphoric, succinic, pyroglutamic, citric, malic, and formic acid).

Mode of Action of the Bacteriocan from Lactobacillus sp. GM7311 against Gram Negative Bacteria (Lactebacillus sp. GM7311이 생산하는 박테리오신의 Gram 음성균에 대한 작용형태)

  • KANG Ji-Hee;LEE Myung-Suk
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.32 no.2
    • /
    • pp.139-143
    • /
    • 1999
  • The antimicrobial action of bacteriocin produced by lactobacillus sp. GM7311 against three Gram negative bacteria, Proteus mirabilis, Vibrio parahaemolyticus, and Escherichia coli, was investigated, When the bacteriocin was added to the culture at different stages, viable cells of all of the indicator strains tested were decreased, even though the most inhibited indicator cell growth stages were different. Transmission electron microscopic observation of indicator strains treated with bacteriocin revealed cell Iysis, indicating the cell membrane appears to be the primary site of action. The amino acids concentration of indicator strains treated with bacteriocin were diminished and fatty acids compositions were changed as compared with controls.

  • PDF

Characterization of Selected Lactobacillus Strains for Use as Probiotics

  • Song, Minyu;Yun, Bohyun;Moon, Jae-Hak;Park, Dong-June;Lim, Kwangsei;Oh, Sejong
    • Food Science of Animal Resources
    • /
    • v.35 no.4
    • /
    • pp.551-556
    • /
    • 2015
  • The aim of this study was to evaluate the functional properties of lactic acid bacteria from various sources and to identify strains for use as probiotics. Ten Lactobacillus strains were selected and their properties such as bile tolerance, acid resistance, cholesterol assimilation activity, and adherence to HT-29 cells were assessed to determine their potential as probiotics. Lactobacillus sp. JNU 8829, L. casei MB3, L. sakei MA9, L. sakei CH8, and L. acidophilus M23 were found to show full tolerance to the 0.3% bile acid. All strains without L. acidophilus M23 were the most acid-tolerant strains. After incubating the strains at pH 2.5 for 2 h, their viability decreased by 3 Log cells. Some strains survived at pH 2.5 in the presence of pepsin and 0.3% bile acid. Lactobacillus sp. JNU 8829, L. acidophilus KU41, L. acidophilus M23, L. fermentum NS2, L. plantarum M13, and L. plantarum NS3 were found to reduce cholesterol levels by >50% in vitro. In the adhesion assay, Lactobacillus sp. JNU 8829, L. casei MB3, L. sakei MA9, and L. sakei CH8 showed higher adhesion activities after 2 h of co-incubation with the intestinal cells. The results of this comprehensive analysis shows that this new probiotic strain named, Lactobacillus sp. JNU 8829 could be a promising candidate for dairy products.

Isolation and Identification of Lactic Bacteria Containing Superior Activity of the Bile Salts Deconjugation (담즙산 분해능이 뛰어난 젖산균의 분리 및 동정)

  • 하철규;조진국;채영규;허강칠
    • Food Science of Animal Resources
    • /
    • v.24 no.2
    • /
    • pp.164-170
    • /
    • 2004
  • The purpose of this study is to isolate probiotic lactic acid bacteria (LAB) that produced bile salts hydrolase. One hundred twenty strains were initially isolated from human feces. Based on their resistance of acid, tolerances of bile salts, and inhibitory activity against Escherichia coli, five strains were selected. A strain producing highest activity of bile salts hydrolase was identified as Lactoacillus plantarum using API carbohydrate fermentation pattern and 16S rRNA sequences, and named CK102. Lactobacillus plantarum CK102 survived at a level of 1.36${\times}$10$\^$8/ CFU/$m\ell$ in pH 2 buffer for 6 h and showed exhibited excellent bile tolerance. When L plantarum CK102 was cultured with E. coli in MRS broth, no viable cells of E. coli was detected after 18 h fermentation. These results suggest that Lactobacillus plantarum CK 102 may be commercially used for the probiotic culture.

Characteristics of the Bacteriocin from Lactobacillus sp. Oh-B3. (Lactobacillus sp. Oh-B3로부터 생산되는 박테리오신의 특성)

  • 김동섭
    • Microbiology and Biotechnology Letters
    • /
    • v.30 no.2
    • /
    • pp.184-188
    • /
    • 2002
  • A bacteriocin producing microorganism, which inhibits the growth of Lactobacillus sake, was screened and isolated from Kimchi. This microorganism was identified and named as Lactobacillus sp. Oh-B3, The maximum amount of bacteriocin was produced when the isolated microorganism was cultured in MRS media(pH 8.0) for 24 hours at 25℃. The bacteriocin from the isolated microorganism was purified through ammonium sulfate precipitation, dialysis and ultrafiltration. The bacteriocin was stable on the wide pH range of 2.0-9.0, and showed antimicrobial activity on some of gram positive bacteria, not on gram negative. The antimicrobial activity of bacteriocin was mostly removed by treatment of proteolytic enzymes. But, the bacteriocin was very stable on the heat treatment, and more than 50% of activity was remained at autoclaving. The action mode of the bacteriocin showed bacteriocidal pattern, being same as that of general bacteriocins.

Changes of Microbiological Distribution in Food Waste for Animal Feed (동물 사료화를 위한 음식물 쓰레기의 미생물 분포 변화)

  • 김판경;박승춘;김명희;오태광;손천배
    • Journal of Veterinary Clinics
    • /
    • v.15 no.1
    • /
    • pp.156-161
    • /
    • 1998
  • This study investigated the microbiological changes and distribution of bacteria producing enzyme in order to change food wastes to animal feed during 6 days at room temperature. Food wastes were divided as follows: one is untreated food wastes containing 80% water content and another wastes containing 40% water content adiusted by wheat bran. During the fermentation of food wastes, Lactobacillus sp. and Streptococcus sp. were grown the top position among investigated microorganisms in both of food wastes. Numbers of total microorganisms were much more than untreated wastes during fermentation of flood wastes with 40% water content. But, Streptococcus sp. and Enterobacteriaceae from 4 to 6 days were not detected in treated wastes with 40% water contents. This fact indicated that the adiustment of water content in food waste was effective in fermentation. However, the numbers of microorganisms producing pretense were low in both treated and untreated food wastes. These results suggested that flood wastes should be treated as food wastes with 40% water content to maintain a lot of fermentative microorganisms such as Lactobacillus sp., Streptococcus sp. and yeasts together with pretense to make final animal feed.

  • PDF

Probiotic Characteristics of Lactobacillus rhamnosus Isolated from Kefir (Kefir로부터 분리한 Lactobacillus rhamnosus의 Probiotic 특성)

  • You, Suk-Jin;Cho, Jin-Kook;Hwang, Seong-Gu;Heo, Kang-Chil
    • Food Science of Animal Resources
    • /
    • v.25 no.3
    • /
    • pp.357-364
    • /
    • 2005
  • To search probiotic microorganisms, we isolated Lactobacillus sp. from kefir, The Lactobacillus sp. strain showed $99.5\%$ of identity to species Lactobacillus rhamnosus by API kit. Lactobacillus rhamnosus showed high resistances to acidic environment, which grew well even at pH 2.0 and $1.0\%$ bile salt Enzyme activity of Lactobacillus rhamnosus was higher in amylase ($0.673\;{\mu}mol/min/mg$) than that in xylanase ($0.288\;{\mu}mol/min/mg$), cellulase($0.117\;{\mu}mol/min/mg$) and phytase($0.269\;{\mu}mol/min/mg$). Especially, the Lactobacillus rhamnosus showed high heat stability which remained $1{\times}10^6\;CFU/ml$ at $60^{\circ}C$. The maximum numbers of Lactobacillus rhamnosus on growth owe was reached at 24 h fermentation and pH was decreased to 4.6. The resistances of Lactobacillus rhamnosus to acidic pH and bile salt were better than that of Lactobacillus acidophilus used as control. When Lactobacillus rhamnosus was cultured with E. coli in MRS broth, E. coli was disappeared after 18 h. These result suggest that the isolated Lactobacillus rhamnosus has a useful probiotics properties.

Microbiological Characteristics of Gamma Irradiated and Low-Salted Fermented Squid (감마선 조사된 저염 오징어젓갈 발효의 미생물균총 특성)

  • Kim, Dong-Ho;Kim, Jae-Hun;Yook, Hong-Sun;Ahn, Hyun-Joo;Kim, Jung-Ok;Sohn, Cheon-Bae;Byun, Myung-Woo
    • Korean Journal of Food Science and Technology
    • /
    • v.31 no.6
    • /
    • pp.1619-1627
    • /
    • 1999
  • Microbiological characteristics of gamma irradiated low salt squid Jeot-gal were examined. Following the fermentation periods, total bacterial cell, Lactobacillus spp., Staphylococcus spp., Streptococcus spp., Pseudomonas spp. and yeast cell number were counted on their selective media and some acid forming bacteria and Pseudomonas spp. were identified. As the gamma irradiation dose increased, the microbial density of early fermentation phase was reduced and the growth rate was delayed. The repression effects on microbiological growth by gamma irradiation were to be higher as salt concentration increased. Adequate conditions of salt concentration and gamma irradiation for low-salt squid Jeot-gal preparation were 10% and 10 kGy, respectively. Lactobacillus sp. 2, Micrococcus varians and Streptococcus sp. I were isolated from 5% salt containing squid Jeot-gal, and Micrococcus morrhuae was from 20% only while Lactobacillus plantarum and Lactobacillus brevis were widespread. Lactobacillus brevis, Pediococcus halophilus and Pseudomonas diminuta were sensitive and Lactobacillus plantarum, Micrococcus morrhuae and Pseudomonas sp. 3 were resistant to gamma irradiation. The diversity of microflora decreased as salt concentration decreased and gamma irradiation dose increased.

  • PDF

Fermentation Patterns of Leek Kimchi and Chinese Cabbage Kimchi (부추김치와 배추김치 발효양상)

  • 안순철;김태강;이헌주;오윤정;이정숙
    • Korean Journal of Microbiology
    • /
    • v.37 no.3
    • /
    • pp.234-238
    • /
    • 2001
  • For the comparison of fermentation pattern of leek kimci with chinese cabbage kimchi, the changes of total viable cell number, Leuconostoc sp. bacteria, Lactobacillus sp. bacteria, pH and total sugar content of twotypes kimchies were investigated during fermentation at $20^{\circ}C$ and $10^{\circ}C$. In chinese cabbage kimchi at $20^{\circ}C$ fermentaion, the numbers of total viable cell, Leuconostoc sp. bacteria and Lactobacillus sp. bacteria reachedthe maximum level on 2nd day and reduced slowly. But in leek kimchi, the maximum numbers of total via-ble cells, Leuconostoc sp. bacteria and Lactobacillus sp. bacteria were obtained after 3 days fermentation,and the cell number of Lactobacillus sp. maintained at the maximum level oyer 15 days. At $10^{\circ}C$ fer-mentation, in both kimchies, the viable cell number of lactic acid bacteria more slowly increased anddecreased than at $20^{\circ}C$. The pH of chinese cabbage kimchi was 4.2 on 3rd day (optimal ripening phase) andmere decreased to 3.5 after 5 days, but in leek kimci the pH 4.2 could be reached after 10 days at $20^{\circ}C$. At $10^{\circ}C$, the optimal ripening pH 4.2 of chinese cabbage kimchi was reached after 6 days, but in leek kimchieven though after 24 days, the pH was maintained oyer 4.3. The total sugar contents of chinese cabbage him-chi and leek kimci were decreased continuously during fermentation. From these results, we know that thefermentation of leek kimchi proceed more slowly than chinese cabbage kimchi by the retardation of lacticacid bacteria growing in leek kimchi.

  • PDF