DOI QR코드

DOI QR Code

Antibacterial Activity by Lactobacillus bulgaricus SP5 against Pathogenic Bacteria

병원성 미생물에 대한 Lactobacillus bulgaricus SP5의 항균활성

  • 김완섭 (한경대학교 동물생명환경과학과) ;
  • 양아름 (한경대학교 동물생명환경과학과)
  • Received : 2016.04.25
  • Accepted : 2016.07.11
  • Published : 2016.08.31

Abstract

This study was carried out to get basic resources for the industrial use of Lactobacillus bulgaricus SP5. The antibacterial activity of the supernatant obtained from Lactobacillus bulgaricus SP5 was tested against the pathogenic bacteria such as Escherichia coli KCCM 11234, Salmonella enteritidis KCCM 3313, Salmonella enteritidis KCCM 12021, and Salmonella typhimurium KCCM 40253. The supernatant of L. bulgaricus SP5 showed antibacterial activity against tested pathogenic bacteria. The antibacterial activity was examined after adjusting pH and heat treatment of supernatant. Heat treatment of supernatant had antibacterial activity against pathogenic bacteria at all temperature. However, pH changes showed no antibacterial activity. Antibacterial activity of the supernatant was confirmed to be due to organic acids (lactic, acetic, phosphoric, succinic, pyroglutamic, citric, malic, and formic acid).

본 연구는 Lactobacillus bulgaricus SP5 분비물의 항균물질 탐색과 특성을 조사하고 병원성 미생물에 대한 억제효과를 얻고자 실시하였다. L. bulgaricus로부터 얻어진 상징액에 대한 항균활성은 시험에 이용된 모든 병원성 미생물인 E. coli 11234, Salmonella. enteritidis 3313, S. enteritidis 12021, 그리고 S. typhimurium 40253에 대해서 항균활성을 가지는 것으로 나타났다. 상징액 중의 황균활성 성분을 확인하기 위하여 다양한 pH 조정과 열처리 후, 병원성 미생물에 대한 항균활성을 측정하였다. 상징액의 열처리 후, 병원성미생물에 대한 항균활성은 비열처리와 같은 항균활성을 나타내었으나, 상징액의 pH를 4.6에서 중성이상으로의 변화는 항균활성이 현저히 감소하였다. 따라서 상징액의 항균활성은 pH 변화에 대해서 불안정하였으나, 열에 대해서는 매우 안정한 것으로 밝혀졌다. 이상의 결과를 통해 상징액의 병원성균에 대한 항균작용은 박테리오신 같은 peptide 보다는 lactic, acetic, phosphoric, succinic, pyroglutamic, citric, malic, 그리고 formic acid 등 다양한 유기산의 작용에 의한 것으로 확인되었다.

Keywords

References

  1. Anderson, M. E. and R. T. Marshall. 1990. Reducing microbial populations on beef tissues: Concentration and temperature of an acid mixture. J. Food Sci. 55: 903-905. https://doi.org/10.1111/j.1365-2621.1990.tb01561.x
  2. Bhunia, A. K., M. C. Johnson, and B. Ray. 1987. Direct detection and antimicrobial of Pediococcus acidilatici in sodium dodecyl sulfate-polyacrylamide gel electrophoresis. J. Ind. Microbiol. Biotechnol. 2: 319-322.
  3. Daba, H. S., J. F. Pandian, R. E. Gossenelin, J. H. Simard, and C. Lacroix. 1991. Detection and activity of a bacteriocin produced by Leuconostoc mesenteroides. Appl. Environ. Microbiol. 57: 3450-3455.
  4. Deegan, L. H., P. D. Cotter, C. Hill, and P. Ross. 2006. Bactriocins: Biological tools for bio-preservation and shelf-life extension. Int. Dairy J. 16: 1058-1071. https://doi.org/10.1016/j.idairyj.2005.10.026
  5. Drider, D., G. Fimland, Y. Hechard, L. M. McMullen, and H. Prevost. 2006. The continuing story of class IIa bacteriocins. Microbiol. Mol. Biol. Rev. 70: 564-582. https://doi.org/10.1128/MMBR.00016-05
  6. Fukushima Y., H. Kawta, A. Hara, and T. Mitsuoka. 1998. Effect of a probiotic in healthy children. Int. J. Food Microbiol. 42: 39-44. https://doi.org/10.1016/S0168-1605(98)00056-7
  7. Gill, C. O. and K. G. Newton. 1982. Effect of lactic acid concentration on growth on meat of gram-negative psychrotrophs from a meatworks. App. Environ. Microbiol. 43: 284-288.
  8. Homma, N. 1998. Bifidobacteria as a resistance factor in human beings. Bifidobact. Microfl. 7: 35-43.
  9. Jang, J. S., Y. D. Lee, and J. H. Park. 2003. Growth inhibition of newly emerging Arcobacter butzleri by organic acids and trisodium phosphate. Korean J. Food Sci. Technol. 35: 1169-1173.
  10. Jung, H. M. and H. H. Lee. 1991. Effects of organic acids on the storability of chilled beef. Korean J. Food Sci. Technol. 23: 379-387
  11. Kim, S. Y., J. D. Kim, J.S. Son, S.K. Lee, K. J. Park, and M. S. Park., 2011. Biochemical and molecular identification of antibacterial lactic acid bacteria isolated from kimchi. Korean. J. Food Sci. Technol. 43: 446-452. https://doi.org/10.9721/KJFST.2011.43.4.446
  12. Laemmli, U. 1970. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature (London), 227: 680-686. https://doi.org/10.1038/227680a0
  13. Lee, J. L., C. S. Huh, and Y. J. Baek. 1999. Utilization of fermented milk and it's health promotion. Korean Dairy Techno. 17: 58-71.
  14. Nakae, T. 1986. Utilization of lactic acid bacteria in animal industry: recent outlook, Jpn. J. Zootech. Sci. 57: 279-287.
  15. Peres, C. M., C. Peres, Hernandez-Mendoza, A., and F. X. Malcata. 2012. Review on fermented plant materials as carriers and sources of potentially probiotic lactic acid bacteriawith an emphasis on table olives. Trends in Food Sci. Technol. 26: 31-42. https://doi.org/10.1016/j.tifs.2012.01.006
  16. Pfeiler, E. A. and T. R. Klaenhammer. 2007. The genomics of lactic acid bacteria. Trends in Microbiology, 15: 546-553. https://doi.org/10.1016/j.tim.2007.09.010
  17. Ray, B. 1986. Impact of bacterial injury and repair in food microbiology: Its past, present and future. J. Food Prot. 49: 651-670 https://doi.org/10.4315/0362-028X-49.8.651
  18. Ray, B. 1992. Nisin of Lactococcus lactis ssp. lactis as a food biopreservative. In: Food biopreservatives of microbial origin. Ray, B. and Daeschel, M. (Eds) CRC Press, Boca Raton, FL, USA. p. 207.
  19. SAS. SAS User's Guide. 2001. Statistical Analysis System Institute. Cary, NC, USA.
  20. Yoshitaka, H., M. Shinji, Y. Yoshihiro, Y. Yasunobu, and T. Tomomi. 2006. Daily intake of heat-killed Lactobacillus plantarum L-137 augments acquired immunity in healthy adults. J. Nutr. 136: 3069-3073. https://doi.org/10.1093/jn/136.12.3069