• Title/Summary/Keyword: Lactobacillus plantarum A

Search Result 590, Processing Time 0.033 seconds

Temperature and microbial changes of corn silage during aerobic exposure

  • Lee, Seong Shin;Lee, Hyuk Jun;Paradhipta, Dimas Hand Vidya;Joo, Young Ho;Kim, Sang Bum;Kim, Dong Hyeon;Kim, Sam Churl
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.32 no.7
    • /
    • pp.988-995
    • /
    • 2019
  • Objective: This study was conducted to estimate the temperature and microbial changes of corn silages during aerobic exposure. Methods: Kwangpyeongok (KW) and Pioneer 1543 (PI) corn hybrids were harvested at 29.7% of dry matter and chopped to 3 to 5 cm lengths. Homo (Lactobacillus plantarum; LP) or hetero (Lactobacillus buchneri; LB) fermentative inoculants at $1.2{\times}10^5$ colony forming unit/g of fresh forage was applied to the chopped corn forage which was then ensiled in quadruplicate with a $2{\times}2$ (hybrid${\times}$inoculant) treatment arrangement for 100 days. After the silo was opened, silage was sub-sampled for analysis of chemical compositions, in vitro digestibility, and fermentation indices. The fresh silage was continued to determine aerobic exposure qualities by recorded temperature and microbial changes. Results: The KW silages had higher (p<0.01) in vitro digestibilities of dry matter and neutral detergent fiber than those of PI silages. Silages applied with LB had higher (p<0.001) acetate concentration, but lower (p<0.01) lactate concentration and lactate to acetate ratio than those of LP silages. The interaction effect among hybrid and inoculant was detected in acetate production (p = 0.008), aerobic stability (p = 0.006), and lactic acid bacteria count (p = 0.048). The yeast was lower (p = 0.018) in LB silages than that in LP silages. During the aerobic exposure, PI silages showed higher (p<0.05) temperature and mold than KW silages, while LP silages had higher (p<0.05) lactic acid bacteria and yeast than LB silages. Conclusion: The results indicated that the changes of silage temperature during aerobic exposure seems mainly affected by mold growth, while applied LB only enhanced aerobic stability of PI silages.

Silage preparation and fermentation quality of natural grasses treated with lactic acid bacteria and cellulase in meadow steppe and typical steppe

  • Hou, Meiling;Gentu, Ge;Liu, Tingyu;Jia, Yushan;Cai, Yimin
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.30 no.6
    • /
    • pp.788-796
    • /
    • 2017
  • Objective: In order to improve fermentation quality of natural grasses, their silage preparation and fermentation quality in meadow steppe (MS) and typical steppe (TS) were studied. Methods: The small-scale silages and round bale silages of mixed natural grasses in both steppes were prepared using the commercial lactic acid bacteria (LAB) inoculants Chikuso-1 (CH, Lactobacillus plantarum) and cellulase enzyme (AC, Acremonium cellulase) as additives. Results: MS and TS contained 33 and 9 species of natural grasses, respectively. Stipa baicalensis in MS and Stipa grandi in TS were the dominant grasses with the highest dry matter (DM) yield. The crude protein (CP), neutral detergent fiber and water-soluble carbohydrate of the mixed natural grasses in both steppes were 8.02% to 9.03%, 66.75% to 69.47%, and 2.02% to 2.20% on a DM basis, respectively. All silages treated with LAB and cellulase were well preserved with lower pH, butyric acid and ammonia-N content, and higher lactic acid and CP content than those of control in four kinds of silages. Compared with CH- or AC-treated silages, the CH+ AC-treated silages had higher lactic acid content. Conclusion: The results confirmed that combination with LAB and cellulase may result in beneficial effects by improving the natural grass silage fermentation in both grasslands.

In vitro Characterization of Bacteriocin Produced by Lactic Acid Bacteria Isolated from Nem Chua, a Traditional Vietnamese Fermented Pork

  • Pilasombut, Komkhae;Rumjuankiat, Kittaporn;Ngamyeesoon, Nualphan;Duy, Le Nguyen Doan
    • Food Science of Animal Resources
    • /
    • v.35 no.4
    • /
    • pp.473-478
    • /
    • 2015
  • The aim of this study was to screen and In vitro characterize the properties of bacteriocin produced by lactic acid bacteria isolated from Vietnamese fermented pork (Nem chua). One hundred and fifty LAB were isolated from ten samples of Nem chua and screened for bacteriocin-producing lactic acid bacteria. Antimicrobial activity of bacteriocin was carried out by spot on lawn method against both gram positive and gram negative bacteria. One isolate, assigned as KL-1, produced bacteriocin and showed inhibitory activity against Lactobacillus sakei, Leuconostoc mesenteroides and Enterococcus faecalis. To characterize the bacteriocin-producing strain, optimum temperature, incubation period for maximum bacteriocin production and identification of bacteriocin-producing strain were determined. It was found that the optimum cultivation temperature of the strain to produce the maximum bacteriocin activity (12,800 AU/mL) was obtained at 30℃. Meanwhile, bacteriocin production at 6,400 AU/mL was found when culturing the strain at 37℃ and 42℃. The isolate KL-1 was identified as L. plantarum. Antimicrobial activity of cell-free supernatant was completely inhibited by proteolytic enzyme of trypsin, alpha-chymotrypsin and proteinase K. Bacteriocin activity was stable at high temperature up to 100℃ for 10 min and at 4℃ storage for 2 d. However, the longer heating at 100℃ and 4℃ storage, its activity was reduced.

Antioxidant and Cholesterol-lowering Effects of Lactic Acid Bacteria Isolated from Kelp Saccharina japonica Kimchi (다시마(Saccharina japonica)김치에서 분리한 유산균의 항산화 및 콜레스테롤 감소 효과)

  • Ryu, Dae-Gyu;Park, Seul-Ki;Kang, Min-Gyun;Jeong, Min-Chul;Jeong, Hee-Jin;Kang, Dong-Min;Lee, Jae-Hwa;Kim, Young-Mog;Lee, Myung-Suk
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.53 no.3
    • /
    • pp.351-360
    • /
    • 2020
  • Previous studies have suggested that microbial fermentation is an attractive process to develop food products using seaweed. The objective of this study was to isolate and characterize lactic acid bacteria (LAB), which are used as starters for seaweed fermentation. The isolation of LAB strains was conducted using kelp Saccharina japonica kimchi, a well-known fermented seaweed in southeastern Korea. Based on the assay of acid tolerance, bile tolerance and antioxidant activity, 15 strains of LAB were selected for further study. The LABs exhibited cholesterol lowering activity in the range of 15.50 to 94.77%. Among the LABs suitable for food production, Lactobacillus plantarum D-11 had the highest antioxidant and cholesterol lowering activities. This probiotic strain will be applied to develop various kelp fermentation products.

Antioxidant Activity of Kelp Saccharina japonica Extract Fermented by Probiotic Lactic Acid Bacteria (Probiotic 유산균 발효에 의한 다시마(Saccharina japonica) 추출액의 항산화 활성)

  • Ryu, Dae-Gyu;Park, Seul-Ki;Kang, Min-Gyun;Jeong, Min-Chul;Jo, Du-Min;Jang, Yu-Mi;Jeong, Hee-Jin;Lee, Do-Ha;Kim, Young-Mog
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.53 no.3
    • /
    • pp.361-367
    • /
    • 2020
  • The objective of this study was to investigate the effect of lactic acid bacteria (LAB) fermentation on the antioxidant activity of kelp Saccharina japonica water extract. Three LAB strains that had exhibited superior antioxidant activity in a previous study were selected for the kelp fermentation starter. The antioxidant activity of the fermented extracts was analyzed during fermentation. After 48 h of fermentation, the extract-fermented Lactobacillus plantarum D-11 strains showed the highest antioxidant activity in terms of DPPH (2,2-diphenyl-2-picryl hydrazyl) radical scavenging, ABTS [2,2'-azino-bis(3-ethylbenzothiazoline-6-sulfonic acid)] radical scavenging, oxygen radical absorbance capacity (ORAC) and fluorescence recovery after photobleaching (FRAP) assay. Furthermore, the analysis of total phenolic and flavonoid contents revealed that the enhanced antioxidant activity was mainly due to the increased antioxidant content from fermentation. Thus, this study suggests that probiotic LAB fermentation is an attractive approach for the development of various kelp fermentation products.

Effect of Dietary Supplementation of Diatom Melosira nummuloides and Lactic Acid Bacteria Lactobacillus plantarum on the Growth and Immune Stimulation Responses of Olive Flounder Paralichthys olivaceus (규조류 및 유산균 첨가 사료 공급에 따른 넙치(Paralichthys olivaceus)의 성장 및 비특이적 면역 촉진 반응에 미치는 영향)

  • Noh, Yun-Hye;Kim, Ki-Hyuk;Moon, Hye-Na;Go, Gyung-Min;Yeo, In-Kyu
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.53 no.4
    • /
    • pp.597-605
    • /
    • 2020
  • The diatom Melosira nummuloides is a microalga that is widely distributed in freshwater and seawater is used is used in the production of silicon and fucoxanthin. The objective of this experimental study was to determine the effects of diatom powder on the physiology of olive flounder Paralichthys olivaceus. In four feeding groups consuming 0%, 1%, 2% and 3% diatom powder. After 8 weeks of feeding, we investigated P. olivaceus growth rate, feed efficiency rate, survival rate, anti-oxidant enzyme rate, non-specific immune activity and immune gene expression. The rates of growth rate, feed efficiency rate and survival were significantly higher for olive flounder in all diatom groups than in the control. The results for anti-oxidant enzyme, superoxide dismutase and catalase showed no significance, but glutathione was significant, depending on the concentration of diatom addition. The galectin and lysozymes of immune genes were increased in the control group. Galectin and lysozymes were thought to have increased due to infections by from pathogens during the experiment period. These results suggest that the addition of diatoms to olive flounder diets is effective in enhancing growth rate and innate immunity.

Anti-Obesity Effects of Starter Fermented Kimchi on 3T3-L1 Adipocytes

  • Lee, Kyung-Hee;Song, Jia-Le;Park, Eui-Seong;Ju, Jaehyun;Kim, Hee-Young;Park, Kun-Young
    • Preventive Nutrition and Food Science
    • /
    • v.20 no.4
    • /
    • pp.298-302
    • /
    • 2015
  • The anti-obesity effects of starter (Leuconostoc mesenteroides+Lactobacillus plantarum) fermented kimchi on 3T3-L1 adipocyte were studied using naturally fermented kimchi (NK), a functional kimchi (FK, NK supplemented with green tea), and FK supplemented with added starters (FKS). Oil red O staining and cellular levels of triglyceride (TG) and glycerol were used to evaluate the in vitro anti-obesity effects of these kimchis in 3T3-L1 cells. The expressions of adipogenesis/lipogenesis-related genes of peroxisome proliferator-active receptor (PPAR)-${\gamma}$, CCAAT/enhance-binding protein (C/EBP)-${\alpha}$, and fatty acid synthase (FAS) were determined by RT-PCR. Kimchis, especially FKS, markedly decreased TG levels and increased levels of intracellular glycerol and lipid lipolysis. In addition, FKS also reduced the mRNA levels of PPAR-${\gamma}$, C/EBP-${\alpha}$, and FAS, which are related to adipogenesis/lipogenesis in 3T3-L1 cells. These results suggest the anti-obesity effects of FKS were to due to enhanced lipolysis and reduced adipogenesis/lipogenesis in 3T3-L1 adipocytes.

Antimicrobial Activity of Bamboo Leaves Extract on Microorganisms Related to Kimchi Fermentation (김치 발효미생물에 대한 대나무잎 추출물의 항균력)

  • Chung, Dae-Kyun;Yu, Ri-Na
    • Korean Journal of Food Science and Technology
    • /
    • v.27 no.6
    • /
    • pp.1035-1038
    • /
    • 1995
  • Antimicrobial activity of bamboo leaves extract on microorganisms related to kimchi fermentation was investigated. Bamboo leaves were extracted with several ogranic solvents such as methanol, acetone, ethyl ether, and ethyl acetate. The bamboo extract with ethyl acetate showed the strongest antimicrobial activity among them. Strong antimicrobial activities of the extract against microorganisms related to kimchi fermentation and food spoilage indicated that the extract had a wide range of antimicrobial spectrum. The antimicrobial activity was especially strong against Brettanomyces custersii, Klebsiella oxytoca, Pichia membranaefaciens which cause kimchi softening. In addition, the antimicrobial activity of bamboo leaves extract was higher than that of 0.5% and 1.0% sorbic acid, and moreover it was stronger in pH 5 compared to pH 7.

  • PDF

Community of natural lactic acid bacteria and silage fermentation of corn stover and sugarcane tops in Africa

  • Cai, Yimin;Du, Zhumei;Yamasaki, Seishi;Nguluve, Damiao;Tinga, Benedito;Macome, Felicidade;Oya, Tetsuji
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.33 no.8
    • /
    • pp.1252-1264
    • /
    • 2020
  • Objective: To effectively utilize crop by-product resources to address the shortage of animal feed during the dry season in Africa, the community of natural lactic acid bacteria (LAB) of corn stover and sugarcane tops and fermentation characteristics of silage were studied in Mozambique. Methods: Corn stover and sugarcane tops were obtained from agricultural field in Mozambique. Silage was prepared with LAB inoculant and cellulase enzyme and their fermentation quality and microbial population were analyzed. Results: Aerobic bacteria were the dominant population with 107 colony-forming unit/g of fresh matter in both crops prior to ensiling, while 104 to 107 LAB became the dominant bacteria during ensiling. Lactobacillus plantarum was more than 76.30% of total isolates which dominated silage fermentation in the LAB-treated sugarcane top silages or all corn stover silages. Fresh corn stover and sugarcane tops contain 65.05% to 76.10% neutral detergent fiber (NDF) and 6.52% to 6.77% crude protein (CP) on a dry matter basis, and these nutrients did not change greatly during ensiling. Corn stover exhibits higher LAB counts and water-soluble carbohydrates content than sugarcane top, which are naturally suited for ensiling. Meanwhile, sugarcane tops require LAB or cellulase additives for high quality of silage making. Conclusion: This study confirms that both crop by-products contain certain nutrients of CP and NDF that could be well-preserved in silage, and that they are potential roughage resources that could cover livestock feed shortages during the dry season in Africa.

Microbial Change and Fermentation Characteristics during Samjung-Hwan Natural Fermentation (천연발효 경과에 따른 삼정환의 미생물 변화 및 발효특성)

  • Shin, Na Rae;Wang, Jing-Hua;Lim, Dongwoo;Lee, Myeong-Jong;Kim, Hojun
    • Journal of Korean Medicine for Obesity Research
    • /
    • v.15 no.2
    • /
    • pp.123-130
    • /
    • 2015
  • Objectives: Samjung-hwan (SJH), a well-known traditional fermented herb formula recorded in Dongui Bogam, has been commonly used for prolonging life for four hundred years in Eastern Asia. However, fermented SJH has not been investigated in terms of microbial ecology until present time. Methods: SJH was fermented for five weeks and fermentation characteristics during SJH fermentation were performed including pH, acidity and microbial profiling. Also, we measured total polyphenol and total flavonoid contents and 1,1-Diphenyl-2-picrylhydrazyl (DPPH) free radical scavenging activity. In order to select starter candidate, several lactic acid bacteria were isolated from fermented SJH. Results: pH of fermented SJH was decreased from 4.7 to 3.0 and acidity was increased from 0.45% to 1.72%. Also, fermented SJH increased antioxidant indicator such as total polyphenol and total flavonoid as well as DPPH free radical scavenging activity. Lactobacillus brevis was increased, Pseudanabaena sp. was decreased, and Lactococcus lactis subsp. lactis was stable during 5-week fermentation of SJH. L. brevis and L. plantarum were isolated from fermented SJH. Conclusions: Fermented SJH for four weeks had optimal effect on antioxidant and fermentation characteristics such as pH, acidity and microbial profile. Further studies are required to develop starter and analyze functional compounds in oder to produce standardized SJH.