• 제목/요약/키워드: Lactobacillus acidophilus probiotic

검색결과 89건 처리시간 0.033초

Screening of Lactobacilli Derived from Chicken Feces and Partial Characterization of Lactobacillus acidophilus A12 as Animal Probiotics

  • Lee, Na-Kyoung;Yun, Cheol-Won;Kim, Seung-Wook;Chang, Hyo-Ihl;Kang, Chang-Won;Paik, Hyun-Dong
    • Journal of Microbiology and Biotechnology
    • /
    • 제18권2호
    • /
    • pp.338-342
    • /
    • 2008
  • This study was performed to screen and select Lactobacillus strains from chicken feces for probiotic use in animals. Of these strains, strain AU had the highest immunostimulatory effect. Therefore, strain A12 was characterized as a potential probiotic. Strain A12 was tentatively identified as Lactobacillus acidophilus A12, using the API 50 CHL kit based on a 99.9% homology. L. acidophilus A12 was highly resistant to artificial gastric juice (pH 2.5) and bile acid (oxgall). Based on results from the API ZYM kit, leucine arylamidase, crystine arylamidase, acid phosphatase, naphthol-AS-BI-phosphohydrolase, ${\alpha}$-galactosidase, ${\beta}$-galactosidase, ${\alpha}$-glucosidase, ${\beta}$-glucosidase, and N-acetyl-${\beta}$-glucosamidase were produced by strain A12. L. acidophilus A12 showed resistance to several antibiotics (nisin, gentamicin, and erythromycin). The amount of interleukin $(IL)-1{\alpha}$ in $20{\times}$ concentrated supernatant from L. acidophilus A12 was approximately 156pg/ml. With regard to antioxidant activity, L. acidophilus A12 supernatant showed 60.6% DPPH radical scavenging activity. These results demonstrate the potential use of L. acidophilus A12 as health-promoting probiotics.

요구르트의 프로바이오틱 활성과 물리화학적 및 기능적 특성에 대한 녹차 추출물의 영향 (Effect of green tea supplementation on probiotic potential, physico-chemical, and functional properties of yogurt)

  • 임은서
    • 미생물학회지
    • /
    • 제53권2호
    • /
    • pp.103-117
    • /
    • 2017
  • 본 연구에서는 된장으로부터 분리된 Lactobacillus acidophilus D11 또는 Lactobacillus fermentum D37 균주로 발효시킨 요구르트의 프로바이오틱로서의 가능성, 물리 화학적 및 기능적 특성에 대한 녹차 추출물의 영향을 조사하였다. 인공 소화액에 대한 저항성과 상피 세포에 대한 부착력과 같은 프로바이오틱활성은 플레인 요구르트보다 녹차 추출물을 첨가한 요구르트에서 다소 높게 나타났는데, 이는 유산균의 수의 증가에 기인하는 것으로 추정되었다. L. acidophilus D11로 발효시킨 플레인 요구르트에 녹차 추출물을 첨가한 경우 유산균수, 유기산 함량 및 점도와 같은 요구르트의 물리 화학적 특성도 유의하게 (P<0.05) 증가하였다. 하지만 녹차 추출물은 L. fermentum D37 균주 발효시킨 요구르트의 물리 화학적 특성에는 유의한 영향을 미치지 않았다 (P>0.05). 한편, Escherichia coli O157 ATCC 43889, Salmonella enteritidis ATCC 13076 및 Salmonella typhimurium KCTC 2514에 대한 항균 활성 및 총 페놀 함량, 라디칼 소거능 및 철 환원력과 같은 항산화 활성은 L. acidophilus D11 보다는 L. fermentum D37로 발효시킨 플레인 요구르트에서 현저히 높았다. 게다가 요구르트의 항균 및 항산화 활성은 녹차 추출물의 농도에 비례하여 유의적으로 증가하였다(P<0.05). 결론적으로, L. acidophilus D11 또는 L. fermentum D37로 발효시킨 녹차 요구르트는 병원성 세균의 성장을 억제하고 체세포 내에 생성된 자유 라디칼을 제거 할 수 있는 유용한 기능성 식품으로 이용할 수 있는 것으로 판단되었다.

Binding of Aflatoxin G1, G2 and B2 by Probiotic Lactobacillus spp.

  • Byun, J.R.;Yoon, Y.H.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • 제16권11호
    • /
    • pp.1686-1689
    • /
    • 2003
  • The ability of ten probiotic bacteria to bind a common food carcinogen aflatoxin $G_1$,$G_2$ and $B_2$ was assessed. The strains were incubated in vitro with aflatoxins and the toxin residues in the supernatant were measured using high performance liquid chromatography. The aflatoxin $G_1$ binding capacity of the strains was found to strain dependent, most efficient binding of AF$G_1$ was observed by L. acidophilus CU028 and L. brevis CU06 which bound approximately 50%. L. acidophilus CU028 was capable of bind approximately 67% of AF$G_2$, difference in their binding ability showed statistical significance (p>0.05). L. acidophilus CU028 and L. helveticus CU 631 were the best binders and the strains were observed to possess variable AF$B_2$-binding ability in the range was from 38.0% to 55.9%. Lactobacillus acidophilus CU028 was the best common binders of the three types of food carcinogen aflatoxins. The application of binding phenomenon in the removal of mycotoxins from contaminated feeds is urgently needed to improve the safety of feeds.

Medium Optimization for the Production of Probiotic Lactobacillus acidophilus A12 Using Response Surface Methodology

  • Lee, Na-Kyoung;Park, Yeo-Lang;Choe, Ga-Jin;Chang, Hyo-Ihl;Paik, Hyun-Dong
    • 한국축산식품학회지
    • /
    • 제30권3호
    • /
    • pp.359-364
    • /
    • 2010
  • Lactobacillus acidophilus A12 was isolated from chicken feces for use as an immunostimulating livestock probiotic. The purpose of this study was to optimize the production of L. acidophilus A12 using response surface methodology (RSM). Initially, the influence of growth medium was studied in terms of carbon sources (glucose, fructose, lactose, glycerol, sucrose, ethanol, and mannitol), nitrogen sources (beef extract, yeast extract, malt extract, and tryptone), and inorganic salts ($CaCl_2$, $MgSO_4$, $KH_2PO_4$, $(NH_4)_2SO_4$, $FeSO_4$, and NaCl). Through one factor-at-a time experiment, lactose, yeast extract, and $CaCl_2$ were determined to be the best sources of carbon, nitrogen, and inorganic salt, respectively. The optimum composition was found to be 17.7 g/L lactose, 18.6 g/L yeast extract, and 0.9 g/L $CaCl_2$. Under these conditions, a maximum cell density of 9.33 Log CFU/mL was produced, similar to the predicted value.

갓김치로부터 분리한 Probiotic 유산균과 Prebiotic Fructooligosaccharide로 제조한 요구르트의 Synbiotic 가능성 (Synbiotic Potential of Yoghurt Manufactured with Probiotic Lactic Acid Bacteria Isolated from Mustard Leaf Kimchi and Prebiotic Fructooligosaccharide)

  • 임성미
    • 한국미생물·생명공학회지
    • /
    • 제40권3호
    • /
    • pp.226-236
    • /
    • 2012
  • 갓김치로부터 분리한 probiotic L. acidophilus GK20 및 L. paracasei GK74를 단독 혹은 혼합 배양하여 제조한 요구르트를 저장하는 동안 이화학적 및 미생물학적 특성과 스타터의 위산이나 담즙산에 대한 저항성, Caco-2 cell에 대한 부착능, 항균, 항산화 및 효소적 활성에 대한 prebiotic FOS(fructooligosaccharide)의 영향을 살펴보았다. FOS를 첨가했을 때 요구르트 내의 스타터 균수, 총산도 및 점도는 유의하게 높아짐과 동시에 pH는 감소되었다(p<0.05). 또한 E. coli ATCC 11229와 S. enteritidis ATCC 13076은 probiotics 스타터가 생산한 항균물질에 의해 저해되었으며, FOS를 첨가한 synbiotic 요구르트의 항균활성은 더욱 증가되었다. 게다가 FOS (1.0%)를 첨가하여 혼합 스타터로 발효시킨 요구르트에서 가장 높은 단백질 분해능 ($1.06{\pm}0.06$ unit) 및 ${\beta}$-galactosidase 활성 ($20.14{\pm}0.31$ unit)을 나타내었다. 하지만 비록 L. acidophilus GK20과 L. paracasei GK74 모두 장관액에 대한 저항성, 장관상피세포에 대한 부착능 및 DPPH radical 소거능이나 환원력과 같은 항산화 활성을 나타내었지만, 이들 활성이 FOS에 의해 증가되진 않았다. 결과적으로 L. acidophilus GK20과 L. paracasei GK74 혼합 배양에 FOS를 첨가한 synbiotic 요구르트는 장내환경 개선과 건강기능 향상에 유용한 것으로 여겨지며, 생리활성은 $4^{\circ}C$에서 7일간 저장 하에서도 일정하게 유지되었음을 확인하였다.

Comparison of Probiotic Characteristics in Lactobacillus acidophilus Strains

  • Oh, Se-Jong;Chai, Chang-Hun;Kim, Sae-Hun;Kim, Young-Jun;Kim, Hyung-S.
    • 한국축산식품학회:학술대회논문집
    • /
    • 한국축산식품학회 2004년도 정기총회 및 제33차 춘계 학술대회
    • /
    • pp.349-352
    • /
    • 2004
  • Twelve strains of Lactobacillus acidophilus isolated from feces of human or animal sources were tested for probiotic properties such as cholesterol assimilation, bile and acid tolerances, and CLA production. Although the cultures showed some variation with respect to each test, the 12 strains could be classified into 3 groups based on their ability to assimilate cholesterol. The cholesterol assimilation showed positive correlation with bile tolerance and negative correlation with acid tolerance. The cholesterol assimilation of L. acidophilus strains may not be related to the deconjugation activity, but may in fact be attributed to its bile tolerance. CLA production by lactic acid bacteria (LAB) exhibited a wide variation that ranged from 2.69 to 7.64 mg/g fat. CLA production of Bifidobacterium longum ATCC 15707 was the highest among the LAB tested, but there was no evidence for differences in CLA production between genus and species.

  • PDF

Probiotic bacteria의 생장에 대한 막걸리슬러지의 이용 (Utilization of Makgeolli sludge for growth of probiotic bacteria)

  • 김완섭
    • 농업과학연구
    • /
    • 제38권3호
    • /
    • pp.473-477
    • /
    • 2011
  • A number of health benefits have been claimed for probiotic bacteria such as Bifidobacterium (B) spp. Lactobacillus(L) acidophilus, and Lactococcus(Lc) cremoris. Viability of probiotic bacteria is important in order to provide health benefits. Only a limited culture media for the test purpose of probiotic bacteria are commercially available (MRS broth), but the media for large-scale propagation of viable cells which are able to be used as food additive are not available. The manufacture of a low priced and preferred novel medium for probiotic bacteria was therefore, attempted using whey protein concentrate(WPC) and Makgeolli sludge as a starting material. The effect of WPC and Makgeolli sludge on the growth of four strains (B. bifidum 15696, B. longum 15707, L. acidophilus CH-2, and Lc. cremoris 20076) was investigated. Medium prepared such as WPC, Makgeolli sludge, and WPC+Makgeolli sludge(WPCMs). It was observed that the growth of 4 strains (B. bifidum 15696, B. longum 15707, L. acidophilus CH-2, and Lc. cremoris 20076) was stimulated by Makgeolli sludge, WPC, WPCMs. Especially, Viable cell number of 4 strains in the WPCMs were higher than that of the single media. These result suggest the possibility that Makgeolli and WPC, acts as a growth factor for the growth of probiotic bacteria.

High-quality draft genome and characterization of commercially potent probiotic Lactobacillus strains

  • Sulthana, Ayesha;Lakshmi, Suvarna G.;Madempudi, Ratna Sudha
    • Genomics & Informatics
    • /
    • 제17권4호
    • /
    • pp.43.1-43.5
    • /
    • 2019
  • Lactobacillus acidophilus UBLA-34, L. paracasei UBLPC-35, L. plantarum UBLP-40, and L. reuteri UBLRU-87 were isolated from different varieties of fermented foods. To determine the probiotic safety at the strain level, the whole genome of the respective strains was sequenced, assembled, and characterized. Both the core-genome and pan-genome phylogeny showed that L. reuteri was closest to L. plantarum than to L. acidophilus, which was closest to L. paracasei. The genomic analysis of all the strains confirmed the absence of genes encoding putative virulence factors, antibiotic resistance, and the plasmids.

Microencapsulation of Probiotic Lactobacillus acidophilus KBL409 by Extrusion Technology to Enhance Survival under Simulated Intestinal and Freeze-Drying Conditions

  • Lee, YunJung;Ji, Yu Ra;Lee, Sumi;Choi, Mi-Jung;Cho, Youngjae
    • Journal of Microbiology and Biotechnology
    • /
    • 제29권5호
    • /
    • pp.721-730
    • /
    • 2019
  • The probiotic Lactobacillus acidophilus KBL409 was encapsulated with alginate (Al) and alginate-chitosan (Al/Chi) through extrusion method. The sizes and zeta potentials of microspheres were measured to confirm encapsulation. To evaluate the protective effect of microspheres against gastrointestinal fluids, all the samples were exposed to simulated gastric fluids (SGFs, pH 1.5) at $37^{\circ}C$ for 1 or 2 h, followed by incubation with simulated intestinal fluids (SIFs, pH 6.5) for 2 h. The mucoadhesive ability of microspheres was evaluated using the intestinal epithelial cell line HT29-MTX. To extend the shelf-life of probiotics, lyoprotectants such as disaccharide and polysaccharide were mixed with free or encapsulated cells during the freeze-drying process. The size of the microspheres demonstrated a narrow distribution, while the zeta potentials of Al and Al/Chi-microspheres were $-17.9{\pm}2.3$ and $20.4{\pm}2.6mV$, respectively. Among all the samples, Al/Chi-encapsulated cells showed the highest survival rate even after exposure to SGF and SIF. The mucoadhesive abilities of Al and Al/Chi-microspheres were higher than 94%, whereas the free L. acidophilus showed 88.1% mucoadhesion. Ten percent of sucrose showed over 80% survival rate in free or encapsulated cells. Therefore, L. acidophilus encapsulated with Al and Al/Chi-microspheres showed higher survival rates after exposure to the gastrointestinal tract and better mucoadhesive abilities than the free cells. Also, sucrose showed the highest protective effect of L. acidophilus during the freeze-drying process.