Browse > Article
http://dx.doi.org/10.4014/jmb.1903.03018

Microencapsulation of Probiotic Lactobacillus acidophilus KBL409 by Extrusion Technology to Enhance Survival under Simulated Intestinal and Freeze-Drying Conditions  

Lee, YunJung (Department of Food Science and Biotechnology of Animal Resources, Konkuk University)
Ji, Yu Ra (Department of Food Science and Biotechnology of Animal Resources, Konkuk University)
Lee, Sumi (Food Research Institute, Ourhome Ltd.)
Choi, Mi-Jung (Department of Food Science and Biotechnology of Animal Resources, Konkuk University)
Cho, Youngjae (Department of Food Science and Biotechnology of Animal Resources, Konkuk University)
Publication Information
Journal of Microbiology and Biotechnology / v.29, no.5, 2019 , pp. 721-730 More about this Journal
Abstract
The probiotic Lactobacillus acidophilus KBL409 was encapsulated with alginate (Al) and alginate-chitosan (Al/Chi) through extrusion method. The sizes and zeta potentials of microspheres were measured to confirm encapsulation. To evaluate the protective effect of microspheres against gastrointestinal fluids, all the samples were exposed to simulated gastric fluids (SGFs, pH 1.5) at $37^{\circ}C$ for 1 or 2 h, followed by incubation with simulated intestinal fluids (SIFs, pH 6.5) for 2 h. The mucoadhesive ability of microspheres was evaluated using the intestinal epithelial cell line HT29-MTX. To extend the shelf-life of probiotics, lyoprotectants such as disaccharide and polysaccharide were mixed with free or encapsulated cells during the freeze-drying process. The size of the microspheres demonstrated a narrow distribution, while the zeta potentials of Al and Al/Chi-microspheres were $-17.9{\pm}2.3$ and $20.4{\pm}2.6mV$, respectively. Among all the samples, Al/Chi-encapsulated cells showed the highest survival rate even after exposure to SGF and SIF. The mucoadhesive abilities of Al and Al/Chi-microspheres were higher than 94%, whereas the free L. acidophilus showed 88.1% mucoadhesion. Ten percent of sucrose showed over 80% survival rate in free or encapsulated cells. Therefore, L. acidophilus encapsulated with Al and Al/Chi-microspheres showed higher survival rates after exposure to the gastrointestinal tract and better mucoadhesive abilities than the free cells. Also, sucrose showed the highest protective effect of L. acidophilus during the freeze-drying process.
Keywords
Encapsulation; extrusion; Lactobacillus acidophilus; intestinal survival; mucoadhesion; lycoprotectant;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Rinaudo M. 2008. Main properties and current applications of some polysaccharides as biomaterials. Polym. Int. 57: 397-430.   DOI
2 Gombotz WR, Wee S. 1998. Protein release from alginate matrices. Adv. Drug Deliv. Rev. 31: 267-285.   DOI
3 Chen S, Cao Y, Ferguson LR, Shu Q, Garg S. 2013. Evaluation of mucoadhesive coatings of chitosan and thiolated chitosan for the colonic delivery of microencapsulated probiotic bacteria. J. Microencapsul. 30: 103-115.   DOI
4 Khan NH, Korber DR, Low NH, Nickerson MT. 2013. Development of extrusion-based legume protein isolatealginate capsules for the protection and delivery of the acid sensitive probiotic, Bifidobacterium adolescentis. Food Res. Int. 54: 730-737.   DOI
5 Shori AB. 2017. Microencapsulation improved probiotics survival during gastric transit. HAYATI J. Biosci. 24: 1-5.   DOI
6 Haidar ZS, Hamdy RC, Tabrizian M. 2008. Protein release kinetics for core-shell hybrid nanoparticles based on the layer-by-layer assembly of alginate and chitosan on liposomes. Biomaterials. 29: 1207-1215.   DOI
7 Chavarri M, Maranon I, Ares R, Ibanez FC, Marzo F, Villaran MC. 2010. Microencapsulation of a probiotic and prebiotic in alginate-chitosan capsules improves survival in simulated gastro-intestinal conditions. Int. J. Food Microbiol. 142: 185-189.   DOI
8 Ramos PE, Abrunhosa L, Pinheiro A, Cerqueira MA, Motta C, Castanheira I, et al. 2016. Probiotic-loaded microcapsule system for human in situ folate production: Encapsulation and system validation. Food Res. Int. 90: 25-32.   DOI
9 Sabikhi L, Babu R, Thompkinson DK, Kapila S. 2010. Resistance of microencapsulated Lactobacillus acidophilus LA1 to processing treatments and simulated gut conditions. Food Bioproc. Tech. 3: 586-593.   DOI
10 Zanjani MAK, Tarzi BG, Sharifan A, Mohammadi N. 2014. Microencapsulation of probiotics by calcium alginategelatinized starch with chitosan coating and evaluation of survival in simulated human gastro-intestinal condition. Iran. J. Pharm. Res. 13: 843-852.
11 Murata Y, Toniwa S, Miyamoto E, Kawahima S. 1999. Preparation alginate gel beads containing chitosan nicotinic acid salt and the functions. Eur. J. Pharm. Biopharm. 48: 49-52.   DOI
12 Koo S, Cho Y, Huh C, Baek Y, Park J. 2001. Improvement of the stability of Lactobacillus casei YIT 9018 by microencapsulation using alginate and chitosan. J. Microbiol. Biotechnol. 11: 376-383.
13 Gagnon M, Berner AZ, Chervet N, Chassard C, Lactoix C. 2013. Comparison of the Caco-2, HT-29 and the mucussecreting HT29-MTX intestinal cell models to investigate Salmonella adhesion and invasion. J. Microbiol. Methods 94:274-279.   DOI
14 Lotfipour F, Mirzaeei S, Maghsoodi M. 2012. Preparation and characterization of alginate and payllium beads containing Lactobacillus acidophilus. Sci. World J. 2012: 680108.
15 Martin MJ, Lara-Villoslada F, Ruiz MA, Morales ME. 2015. Microencapsulation of bacteria: a review of different technologies and their impact on the probiotic effects. Innov. Food Sci. Emerg. Technol. 27: 15-25.   DOI
16 Silva MP, Tulini FL, Martins E, Penning M, Favaro-Trindade CS, Poncelet D. 2018. Comparison of extrusion and coextrusion encapsulation techniques to protect Lactobacillus acidophilus LA3 in simulated gastrointestinal fluids. LWT-Food Sci. Technol. 89: 392-399.   DOI
17 Shinde T, Sun-Waterhouse D, Brooks J. 2014. Co-extrusion encapsulation of probiotic Lactobacillus acidophilus alone or together with apple skin polyphenols: an aqueous and value-added delivery system using alginate. Food Bioproc. Tech. 7: 1581-1596.   DOI
18 Klemmer KJ, Korber DR, Low NH, Nickerson MT. 2011. Pea protein-based capsules for probiotic and prebiotic delivery. Int. J. Food Sci. Technol. 46: 2248-2256.   DOI
19 Heidebach T, Forst P, Kulozik U. 2009. Microencapsulation of probiotic cells by means of rennet-gelation of milk proteins. Food Hydrocoll. 23: 1670-1677.   DOI
20 Heidebach T, Forst P, Kulozik U. 2012. Microencapsulation of probiotic cells for food applications. CRC. Crit. Rev. Food Sci. Nutr. 52: 291-311.   DOI
21 Hansen LT, Allan-Wojtas PM, Jin YL, Paulson AT. 2002. Survival of Ca-alginate microencapsulated Bifidobacterium spp. in milk and simulated gastrointestinal conditions. Food Microbiol. 19: 35-45.   DOI
22 Shahidi F, Han XQ. 1993. Encapsulation of food ingredients. Crit. Rev. Food Sci. Nutr. 33: 501-547.   DOI
23 Bhumkar DR, Pokharkar VB. 2006. Studies on effect of pH on cross-linking of chitosan with sodium tripolyphosphate:a technical note. Pharm. Dev. Technol. 7: E138-E143.   DOI
24 Minekus M, Alminger M, Alvito P, Balance S, Bohn T, Bourlieu C, et al. 2014. A standardized static in vitro digestion method suitable for food - an international consensus. Food Funct. 5: 1113-1124.   DOI
25 Kirby BJ, Hasselbrink JEF. 2004. Zeta potential of microfluidic substrates: 1. Theory, experimental techniques, and effects on separations. Electrophoresis 25: 187-202.   DOI
26 Carpenter JF, Prestrelski SJ, Arakawa T. 1993. Separation of freezing- and drying-induced denaturation of lyophilized proteins using stress-specific stabilization: I. Enzyme activity and calorimetric studies. Arch. Biochem. Biophys. 303: 456-464.   DOI
27 Oomen G, Rompelberg CJM, Bruil MA, Dobbe CJG, Pereboom DPKH, Sips AJAM. 2003. Development of an in vitro digestion model for estimating the bioaccessibility of soil contaminants. Arch. Environ. Contam. Toxicol. 44: 281-287.   DOI
28 Shi LE, Li ZH, Li DT, Xu M, Chen HY, Zhang ZL, et al. 2013. Encapsulation of probiotic Lactobacillus bulgaricus in alginate-milk microspheres and evaluation of the survival in simulated gastrointestinal conditions. J. Food Eng. 117: 99-104.   DOI
29 Ooi LG, Liong MT. 2010. Cholesterol-lowering effects of probiotics and prebiotics: A Review of in vivo and in vitro findings. Int. J. Mol. Sci. 11: 2499-2522.   DOI
30 Knorr D. 1998. Technology aspects related to microorganisms in functional foods. Trends Food Sci. Technol. 9: 295-306.   DOI
31 Muthukumarasamy P, Allan-Wojtas P, Holley RA. 2006. Stability of Lactobacillus reuteri in different types of microcapsules. J. Food Sci. 71: 20-24.   DOI
32 Cook MT, Tzortzis G, Charalampopoulos D, Khutoryanskiy VV. 2011. Production and evaluation of dry alginate-chitosan microcapsules as an enteric delivery vehicle for probiotic bacteria. Biomacromolecules 12: 2834-2840.   DOI
33 Krasaekoopt W, Bhandari B, Deeth H. 2003. Evaluation of encapsulation techniques of probiotics for yoghurt. Int. Dairy J. 13: 3-13.   DOI
34 Xiangchen M, Catherine SS, Gerald FF, Charles D, Ross P. 2008. Anhydrobiotics: The challenges of drying probiotic cultures. Food Chem. 106: 1406-1416.   DOI
35 Anselmo AC, McHugh KJ, Webster J, Langer R, Jaklenec A. 2016. Layer-by-layer encapsulation of probiotics for delivery to the microbiome. Adv. Mater. 28: 9486-9490.   DOI
36 Rodklongtan A, La-ongkham O, Nitisinprasert S, Chitprasert P. 2014. Enhancement of Lactobacillus reuteri KUB-AC5 survival in broiler gastrointestinal tract by microencapsulation with alginate-chitosan semi-interpenetrating polymer networks. J. Appl. Microbiol. 117: 227-238.   DOI
37 He C, Shiwei C, Chuanna L, Guowei S. 2015. Response surface optimization of lyoprotectant for Lactobacillus bulgaricus during vacuum freeze-drying. Prep. Biochem. Biotech. 45: 463-475.   DOI
38 Mimoza BS, Monika M, Sharareh S, Frank MU, Helmut V. 2014. Effect of lyoprotectants on ${\beta}$-glucosidase activity and viability of Bifidobacterium infantis after freeze-drying and storage in milk and low pH juices. LWT-Food Sci. Technol. 57: 276-282.   DOI
39 Maria S, Ilkka V, Liisa N, Anu V, Jaana M. 2006. Fibres as carries for Lactobacillus rhamnosus during freeze-drying and storage in apple juice and chocolate-coated breakfast cereals. Int. J. Food Microbiol. 112: 171-178.   DOI
40 Ananta E, Volkert M. Knorr D. 2005. Cellular injuries and storage stability of spray-dried Lactobacillus rhamnosus GG. Int. Dairy J. 15: 399-409.   DOI
41 Susanna R, Pirjo R. 2010. Protecting probiotic bacteria by microencapsulation: challenges for industrial applications. Eur. Food Res. Technol. 231: 1-12.   DOI
42 Heckly RJ. 1985. Principles of preserving bacteria by freezedrying. Dev. Ind. Microbiol. 26: 379-395.