• Title/Summary/Keyword: Lactobacillus Plantarum

Search Result 803, Processing Time 0.035 seconds

Phage Particle Proteins and Genomic Characterization of the Lactobacillus plantarum Bacteriophage SC 921. (Lactobacillus plantarum Bacteriophage SC 921의 phage particle protein 및 genome의 특성)

  • 김재원;신영재;심영섭;유승구;윤성식
    • Microbiology and Biotechnology Letters
    • /
    • v.26 no.2
    • /
    • pp.117-121
    • /
    • 1998
  • Bacteriophage SC 921 of Lactobacillus plantarum, isolated from kimchi, showed high lytic effects at 0.2 M.O.I. level. The phage particle contained 4 major proteins (48, 34, 32, 29 kDa). Intact DNA of phage SC 921 is a double stranded linear molecule, and the genomic size is approximately 66.5 kilobase pairs (kbp). Restriction analysis of the genome showed that Sma I gave single site cut and Xba I gave 2 site cuts, while Cla I, Kpn I, and EcoR I formed 4, 5, and 6 cuts, respectively. Hind III digested phage DNA to many fragments. A restriction map of genomic DNA was constructed using the restriction endonuclease Kpn I, Sma I, and Xba I. Bacteriophage SC 921 was compared with B2 phage which had been reported to infect Lactobacillus plantarum ATCC 8014(KCCM l1322). Bacteriophage SC 921 differs from B2 phage at least in thr size of its genome and phage particle proteins.

  • PDF

Physiological Functionality of Fermented Pear Fruitlet Product Made by Mixed Fermentation of Saccharomyces cerevisiae, Kluyveromyces fragilis and Lactobacillus plantarum (Saccharomyces cerevisiae와 Kluyveromyces fragilis 및 Lactobacillus plantarum의 혼합발효로 제조한 배 유과 발효제품의 생리기능성)

  • Jang, In-Taek;Kim, Young-Hun;Na, Kwang-Chul;Lee, Jong-Soo
    • The Korean Journal of Mycology
    • /
    • v.41 no.1
    • /
    • pp.33-37
    • /
    • 2013
  • To develop the functional pear fruitlet product, we prepared fermented pear fruitlet product (FPFP) from mixed fermentation of Saccharomyces cerevisiae, Kluyveromyces fragilis and Lactobacillus plantarum. Then, we investigated their several physiological functionalities. Among several physiological functionalities, antihypertensive angiotensin I-converting enzyme (ACE) inhibitory activity of the FPFP was the highest of 87.4% and its antioxidant activity was also showed 69.6%. FPFP from mixed fermentation by yeasts and Lactobacillus plantarum after thawing of frozen pear at $20^{\circ}C$ showed higher physiological functionalities than those of single fermentation by Saccharomyces cerevisiae or Bacillus subtilis after $40^{\circ}C$ of thawing.

Characteristic Changes of Galgeuntang Fermented with Lactic Acid Bacteria (유산균 발효에 의한 갈근탕의 특성변화 분석)

  • Rhee, Young-Kyoung;Kim, Mi-Hyun;Lee, Young-Chul;Rho, Jeong-Hae;Ma, Jin-Yeul;Cho, Chang-Won
    • Korean Journal of Food Science and Technology
    • /
    • v.43 no.5
    • /
    • pp.655-658
    • /
    • 2011
  • The possible application of Lactobacillus spp. as a functional starter culture to ferment galgeuntang (GT) and to produce bioactive isoflavone (daidzein) was investigated. Lactobacillus casei KFRI 127, L. plantarum KFRI 144, L. bulgaricus KFRI 344 were used for GT fermentation. Acid development and quantification of isoflavones using high-performance liquid chromatography were performed after fermentation at 37$^{\circ}C$ for 48 h. All the tested Lactobacillus spp. lowered pH to about 3.8 in 48 h and L. plantarum KFRI 144 exhibited 89.9% hydrolysis rate of daidzin (79.1-8.0 ${\mu}g$/mL) during fermentation. The content of daidzein in GT fermented with L. plantarum KFRI 144 was increased by 6.6-fold (3.6-23.9 ${\mu}g/mL$). These results demonstrate that L. plantarum KFRI 144 has potential as functional starter culture for manufacturing fermented GT with higher isoflavone bioavailability.

Lactobacillus plantarum APsulloc 331261 Fermented Products as Potential Skin Microbial Modulation Cosmetic Ingredients (Lactobacillus plantarum APsulloc 331261 발효 용해물의 피부 미생물 조절 효과)

  • Kim, Hanbyul;Myoung, Kilsun;Lee, Hyun Gee;Choi, Eun-Jeong;Park, Taehun;An, Susun
    • Journal of the Society of Cosmetic Scientists of Korea
    • /
    • v.46 no.1
    • /
    • pp.23-29
    • /
    • 2020
  • The skin is colonized by a large number of microorganisms with a stable composition of species. However, disease states of skin such as acne vulgaris, psoriasis, and atopic dermatitis have specific microbiome compositions that are different from those of healthy skin. The target modulation of the skin microbiome can be a potential treatment for these skin diseases. Quorum sensing (QS), a bacterial cell-cell communication system, can control the survival of bacteria and increase cell density. Also, QS affects the pathogenicity of bacteria such as biofilm formation and protease production. In this study, we confirmed anti-QS activity of Amorepacific patented ingredients, which are Lactobacillus ferment lysate (using Lactobacillus plantarum APsulloc 331261, KCCM 11179P) through bio-reporter bacterial strain Chromobacterium violaceum. The purple pigment production of C. violaceum controlled by QS was reduced 27.3% by adding 10 ㎍/mL of Lactobacillus ferment lysate (freeze dried). In addition, the Lactobacillus ferment lysate increased growth of Staphylococcus epidermidis 12% and decreased growth of Pseudomonas aeruginosa 38.5% and its biofilm formation 17.7% at a concentration of 10 ㎍/mL compared to the untreated control group. Moreover, S. epidermidis was co-cultured with the representative dermatological bacterium Staphylococcus aureus in the same genus, the growth of S. epidermidis was increased 134 % and the growth of S. aureus was decreased 13%. These results suggest that fermented lysate using Lactobacillus plantarum APsulloc 331261 may be useful as a cosmetic ingredient that can control the balance of skin microbiome.

Isolation of Lactobacillus plantarum HB1 from Tongchimi and Its Nitrite-Scavenging Effect (동치미로부터 분리된 유산균 Lactobacillus plantarum HB1의 아질산염 소거 효과)

  • 유형재;이선숙;이동석;김한복
    • Korean Journal of Microbiology
    • /
    • v.39 no.3
    • /
    • pp.192-196
    • /
    • 2003
  • To obtain large pools of lactic acid bacteria, a strain was isolated from Tongchimi. Through its sugar fermentation and analysis of 16S rRNA gene, it was identified to be Lactobacillus plantarum HB1. This strain is Gram-positive and catalase-negative. In the range of 1~88 bp in the HB1 16S rRNA gene, the HB1 strain was homologous with other L. plantarum strains by almost 100%, and in the range of the rest 32 bp, the HB1 strain showed considerable variation, compared to other strains. Nitrate which may exist in radish can be easily converted to nitrite. The nitrite interacts with amine, and becomes nitrosamine which may cause stomach cancer. The culture obtained by HB1 strain could eliminate 400 ${\mu}M$ nitrite within 1.5 hr. It is necessary to isolate specific components which are involved in nitrite elimination in the culture and to study on its mechanism.

Evaluation of the Colonization of Lactobacillus plantarum in Mouse Gut by Terminal Restriction Fragment Length Polymorphism Analysis (Terminal Restriction Fragment Length Polymorphism 분석을 이용한 Lactobacillus plantarum의 생쥐 장관 정착 평가)

  • Jung, Gwangsick;Lee, Jong-Hoon
    • Microbiology and Biotechnology Letters
    • /
    • v.40 no.4
    • /
    • pp.389-395
    • /
    • 2012
  • T-RFLP (terminal restriction fragment length polymorphism) analysis, one of the most highly adopted culture-independent microbial community analysis methods, was applied to evaluate the colonization of probiotics in experimental animal gut. Lactic acid bacteria that exhibited cinnamoyl esterase activity were isolated from Korean fermented vegetables and identified by 16S ribosomal RNA sequence analysis. Lactobacillus plantarum KK3, which demonstrated high chlorogenic acid hydrolysis by cinnamoyl esterase activity, and acid/bile salt resistances, was cultured, freeze-dried, and fed to mice and the microbiota in their feces were monitored by T-RFLP analysis. The T-RF of L. plantarum was detected in the feces of mice after the start of administration and lasted at least 31 days after the initial 7 day feeding. T-RFLP analysis was considered a useful tool to evaluate the gut colonization of probiotic L. plantarum. In order to prove that L. plantarum was from viable cells, we reisolated L. plantarum in the feces using cinnamoyl esterase activity media as the screening step. The colonization of L. plantarum KK3 in the mouse gut was confirmed by this research.

Differential Cytokine Regulatory Effect of Three Lactobacillus Strains Isolated from Fermented Foods

  • Lee, Yoon-Doo;Hong, Yi-Fan;Jeon, Boram;Jung, Bong Jun;Chung, Dae Kyun;Kim, Hangeun
    • Journal of Microbiology and Biotechnology
    • /
    • v.26 no.9
    • /
    • pp.1517-1526
    • /
    • 2016
  • Lactic acid bacteria (LAB) isolated from fermented foods have potential as a treatment for immune-related disorders and the use of LAB has been increasing worldwide. In this study, the differential cytokine regulatory effect was examined with three isolates of lactobacilli strains; namely, Lactobacillus plantarum K55-5 isolated from dairy product, and L. sakei K101 and L. plantarum K8 previously isolated from kimchi (a Korean traditional fermented vegetable). Production of cytokines such as IL-10, IL-12, IFN-γ, and TNF-α was significantly increased in L. sakei K101- and L. plantarum K55-5-treated splenocytes as compared with controls. The oral administration of L. sakei K101 and L. plantarum K55-5 increased cytokine production in the immunosuppressed mouse splenocytes and blood. NK cell cytotoxic activity was also increased in L. sakei K101- and L. plantarum K55-5-fed mice. On the other hand, L. plantarum K8 did not affect cytokine induction in all the experiments performed in this study. The cytokine-inducing effect of L. plantarum K55-5 was significantly increased by lysates of heat-killed bacteria as compared with live, heat-killed, or supernatant of cell lysates. TNF-α production by lipoteichoic acids (LTAs) isolated from the three isolates of lactobacilli was compared, and it was found that K55-5 LTA had a highest cytokine-inducing ability, which was mediated by TLR2-mediated NF-κB and ERK activation. Taken together, our study suggests that L. plantarum K55-5 and L. sakei K101 can be used for the treatment of immunosuppressed disorders.

Studies on the characteristics of Lactobacillus plantarum isolated from oat silage (연맥 사일리지에서 분리된 Lactobacillus plantarum의 균특성에 관한 연구)

  • Jeong, Jong-yul;Lim, Young-taek;Seok, Ho-bong
    • Korean Journal of Veterinary Research
    • /
    • v.40 no.2
    • /
    • pp.325-332
    • /
    • 2000
  • The growth characteristics and the cellular protein patterns of the Lactobacillus plantarum isolated and identified from oat silage were examined in order to confirm whether it will be used practically as probiotics or not. L plantarum was identified by morphological and biochemical tests including of final conforming by API 50CHL kit. The cultivation in MRS broth of the strain under the condition of different temperature, proved that they grew into $2.0{\times}10^{9}$ in $25^{\circ}C$, into $1.4{\times}10^{9}$ in $35^{\circ}C$ but they decreased into $4.5{\times}10^{5}$ growth in $45^{\circ}C$. The comparison of the growth by measurement of O.D600nm value after 24 hour cultivation between L plantarum and commercial probiotics, showed that the strain had a higher growth than commercial as 1.841 : 1.623. The measurement of it under bile acid's existence, indicated that this isolation was not influenced by bile acid and the tolerance was $3.2{\times}10^{9}$, $3.9{\times}10^{9}$ and $3.2{\times}10^{9}$, respectively, when each of 0%, 1%, and 2% oxigall existed. The examination of their antibiotics susceptibility by disk diffusion test, proved that L plantarum showed resistance against danofloxacin(5mcg), gentamycin(10mcg), kanamycin(30mcg), neomycin(30mcg) and streptomycin(10mcg). Based upon the test of the bacteriocin formation of this L plantarum, it was found out that the inhibition zone was not formed. In growth of L plantarum and E coli in nutrient broth, all E coli died out within 6 hours after cultures.

  • PDF

4,4'-Diaponeurosporene from Lactobacillus plantarum subsp. plantarum KCCP11226: Low Temperature Stress-Induced Production Enhancement and In Vitro Antioxidant Activity

  • Kim, Mibang;Jung, Dong-Hyun;Seo, Dong-Ho;Park, Young-Seo;Seo, Myung-Ji
    • Journal of Microbiology and Biotechnology
    • /
    • v.31 no.1
    • /
    • pp.63-69
    • /
    • 2021
  • Carotenoids, which have biologically beneficial effects and occur naturally in microorganisms and plants, are pigments widely applied in the food, cosmetics and pharmaceutical industries. The compound 4,4'-diaponeurosporene is a C30 carotenoid produced by some Lactobacillus species, and Lactobacillus plantarum is the main species producing it. In this study, the antioxidant activity of 4,4'-diaponeurosporene extracted from L. plantarum subsp. plantarum KCCP11226 was examined. Maximum carotenoid content (0.74 ± 0.2 at A470) was obtained at a relatively low temperature (20℃). The DPPH radical scavenging ability of 4,4'-diaponeurosporene (1 mM) was approximately 1.7-fold higher than that of butylated hydroxytoluene (BHT), a well-known antioxidant food additive. In addition, the ABTS radical scavenging ability was shown to be 2.3- to 7.5-fold higher than that of BHT at the range of concentration from 0.25 mM to 1 mM. The FRAP analysis confirmed that 4,4'-diaponeurosporene (0.25 mM) was able to reduce Fe3+ by 8.0-fold higher than that of BHT. Meanwhile, 4,4'-diaponeurosporene has been confirmed to be highly resistant to various external stresses (acid/bile, high temperature, and lysozyme conditions). In conclusion, L. plantarum subsp. plantarum KCCP11226, which produces 4,4'-diaponeurosporene as a functional antioxidant, may be a potentially useful strain for the development of functional probiotic industries.

Effect of Coating Materials on the Stability of Spray-Dried Lactobacillus Powder during Storage (코팅된 젖산세균 분말의 저장 안정성에 미치는 효과)

  • Kim, Soojin;Lee, SangYoon;Han, Jong-Kwon;Lee, Jae-Kwon;Choi, Mi-Jung
    • Korean Journal of Food Science and Technology
    • /
    • v.47 no.5
    • /
    • pp.633-638
    • /
    • 2015
  • Lactobacillus is a probiotic that suppresses the growth of pathogens while preventing constipation, diarrhea, and intestinal inflammation. However, various environmental conditions such as pH and temperature affect the growth of Lactobacillus. In this study, Lactobacillus plantarum was encapsulated with starch using a spray dryer to protect the viability of the organism during storage and to increase its acid tolerance. The lower water activity and storage temperature resulting from this method influenced the survival of L. plantarum. In encapsulated Lactobacillus powders, viability of Lactobacillus was increased during storage at $20^{\circ}C$ relative to that of L. plantarum stored at $35^{\circ}C$ in the same water activity conditions. Furthermore, L. plantarum encapsulated in starch with ginger showed increased viability when compared to non-encapsulated L. plantarum stored without treatment. Finally, based on a simulated digestion test, encapsulated L. plantarum survived at a pH of 2, whereas the non-encapsulated L. plantarum did not. Thus, coating the encapsulated powder with these materials was effective in maintaining Lactobacillus viability.