• Title/Summary/Keyword: Lactobacillus Fermentation

Search Result 963, Processing Time 0.033 seconds

Effect of Lactic Acid Bacteria on the Qualities of White Pan Bread (빵의 품질에 미치는 유산균의 영향)

  • 장준형;안재법
    • The Korean Journal of Food And Nutrition
    • /
    • v.9 no.4
    • /
    • pp.509-515
    • /
    • 1996
  • The effects of sour liquid ferments with lactic acid bacteria on the baking properties and qualities of White Pan Bread were studied. The mixed culture of Lactobacillus brevis and Lactobacillus plantarum had higher acid equivalents and lower pH-values than single or mixed culture of other lactic acid bacteria which had been used for traditional sour dough bread. Optimum conditions of the incubation of lactic acid bacteria, which are incubation temperature time and culture medium compositions for lactic fermentation, were also investigated to find out optimum activity for good bread making. The mixed culture of L. brevis and l. plantarum incubated for 24 hours at 3$0^{\circ}C$ had the most optimum activity for bread manufacturing process and the qualities of the products. The addition of sour liquid ferments to the sponge dough effected on fermentation activity of the sponge dough to lower the level of pH to 4.64 and to produce more total titratable acidity(TTA) of 0.545, whereas conventional sponge dough bread had 0.46% of TTA. On comparison with control bread, the bread made with sour liquid ferments was found to have better specific volume, taste, symmetry, especially, organoleptic characteristics due to lactic acid, acetic acid and amino acid produced by lactic acid bacteria. Sour dough bread with liquid ferment was considered to be more effective to the inhibition of staling during storage for 6 days at $25^{\circ}C$ and to have longer shelf-than control.

  • PDF

Effect of Pine Needle(Pinus densiflora Seib. et Zucc) Sap on Kimchi Fermentation (솔잎즙의 첨가가 김치의 발효숙성에 미치는 영향)

  • Choi, Moo-Young;Choi, Eun-Jung;Lee, Eun;Cha, Bae-Cheon;Park, Hee-Juhn;Rhim, Tae-jin
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.25 no.6
    • /
    • pp.899-906
    • /
    • 1996
  • The physicochemical and microbiological studies were conducted to examine the effect of pineneedle(Pinu densinora Seib. et Zucc) sap on the Kimchi fermentation. Kimchi with the addition of various levels(0, 0.5, 1.0, or 1.5%) of pine needle sap was fermented either at $4^{\circ}C$ for 15 days after placing at room temperature for 24 hours(Group A) or at $15^{\circ}C$ for 15 days(Group B). pH reached the optimal value of Kimchi fermentation(pH 4.2) on day 3 and day 4~7 in 0% treatment and pine needle sap treatments, respectively, which indicated that shelf-life of Kimchi was extended by 1~4 days by the addition of pine needle sap. Total acidity was decreased by the addition of pine needle sap. More rapid decrease in pH and increase in total acidity were observed in Group B than in Group A. Reducing sugar content was reduced to approximately 80% by day 4~5 in all treatments. Total vitamin C content was reached peak on day 1 of fermentation and then decreased in all treatments. Reducing sugar and total vitamin C contents were slightly increased by the addition of pine needle sap due to the components present in pine needle sap. Total viable cell number rapidly increased to reach Peak on day 3 and then slowly decreased during the fermentation. However, total viable cell number as well as reducing sugar and total vitamin C contents did not differ between Group A and Group B. In Group A, Lactobacillus cell number in 0% treatment continued to increase to reach peak on day 9, while the numbers in pine needle sap treatments reached Peak on day 5~9 and then gradually decreased throughout the fermentation. Unlike in Group A, Lactobaillus cell numbers in pine needle sap treatments in Group B continued to increase to reach Peak on day 7. As pine needle sap levels increased, total viable cell number and Lactobacillus cell number decreased regardless of fermentation temperatures. The results of this study indicate that pine needle sap causes to delay the Kimchi fermentation by slowing down pH drop and inhibiting the Lactobacillus cell growth.

  • PDF

Effect of inoculation of Lactobacillus plantarum isolated from swine feces on fermentation characteristics of hulless barley

  • Jeong, Yong Dae;Lee, Jung Jae;Seol, Kuk-Hwan;Kim, Doo Wan;Min, Ye Jin;Yu, Dong Jo;Cho, Kyu Ho;Kim, Young Hwa
    • Korean Journal of Agricultural Science
    • /
    • v.44 no.4
    • /
    • pp.558-565
    • /
    • 2017
  • This study was conducted to determine the effect of inoculation of microorganism isolated from pig feces on nutrient contents of fermented hulless barley. The microbial flora in feces of a total of four crossbred piglets ($Landrace{\times}Yorkshire{\times}Duroc$) was analyzed by 16s rRNA sequencing. The most abundant strain was then selected for fermentation of hulless barley. Lactobacillus plantarum (L. plantarum) was dominant (64.56%) in intestinal microbial flora in the pig feces. The selected candidate strain showed significantly higher survival rate at pH 7 than at pH 2.5 and 3.0 (p < 0.05). Incubated culture containing the candidate strain showed an increased growth rate with lower pH levels after 7.5 h incubation compared to initial incubation period (p < 0.05). When compared with commercial multiple probiotics which were used as control, the selected strain showed faster growth rate at 5 h post-incubation (p < 0.05). During the fermentation period, neither inoculated nor non-inoculated control hulless barley showed any change in pH value. Crude fat, fiber and ash contents were lower (p < 0.05) in hulless barley inoculated by the selected strain compared to control. However, moisture, energy, NDF and ADF were not affected by the inoculation of strain or fermentation period. Lactic acid was increased and acetic acid was decreased in the hulless barley inoculated with the selected strain during the fermentation period (p < 0.05). Taken together, our results suggest that L. plantarum derived from the pigs could be utilized as a new microorganism for manufacturing fermented feed stuffs.

The Effect of Fermented Extracts of Portulaca oleracea against Campylobacter jejuni (쇠비름 추출물 발효액이 Campylobacterjejuni의 증식에 미치는 영향)

  • Bae, Ji-Hyun
    • The Korean Journal of Food And Nutrition
    • /
    • v.25 no.2
    • /
    • pp.291-298
    • /
    • 2012
  • One of the main microorganisms causing diarrheal diseases is Campylobacter jejuni. Purslane or Portulaca oleracea is an edible plant containing polyphenols that has been widely used as a folk remedy for treatment of diarrhea for a long time. This study was performed to investigate the antimicrobial activity of fermented P. oleracea extracts made with probiotics and plant-origin lactic acid bacteria(PLAB) isolated from P. oleracea against C. jejuni. Lactobacillus rhamnosus, L. acidophilus, L. bulgaricus, L. delbrueckii, L. plantarum, Leuconostoc mesenteroides and Bifidobacterium longum were applied to P. oleracea to make a fermentation broth of purslane. Leuconostoc mesenteroides and the lactic acid bacteria isolated from P. oleracea grew best in the fermentation broth of P. oleracea extracts when the broth was combined with 2% yeast extract, 1% peptone, and 0.05 to 1% potassium phosphate. The number of viable cells in the fermentation broth containing purslane extracts after 48 hours increased to $1{\times}10^{12}\;CFU/m{\ell}$ and remained at $1.3{\times}10^{10}\;CFU/m{\ell}$ after refrigeration for 2 weeks. The pH and acidity of purslane-fermented broth after 48 hours of fermentation was 3.7 and 3.14, respectively, which show that the fermentation broth was within the range of the general standards of fermented dairy products. The antimicrobial activity of the fermented P. oleracea extracts was determined using the liquid culture method. The 10 $mg/m{\ell}$ concentration of the fermented P. oleracea extract made with Leuconostoc mesenteroides and the lactic acid bacteria isolated from purslane showed the strongest antimicrobial activity against C. jejuni. The fermentation broth of purslane with the probiotics retarded the growth of C. jejuni for 48 hours at $42^{\circ}C$.

Comparison of Microbial Community Compositions between Doenjang and Cheonggukjang Using Next Generation Sequencing (차세대 염기서열 분석법을 이용한 전통 된장과 청국장의 미생물 분포 분석)

  • Ha, Gwangsu;Kim, JinWon;Shin, Su-Jin;Jeong, Su-Ji;Yang, Hee-Jong;Jeong, Do-Youn
    • Journal of Life Science
    • /
    • v.31 no.10
    • /
    • pp.922-928
    • /
    • 2021
  • To profile the microbial compositions of Korean traditional fermented paste made from whole soybeans, Doenjang and Cheonggukjang, and compare their taxonomic differences, we analyzed the V3-V4 region of 16S rRNA of naturally fermented foods by using next generation sequencing. α-Diversity results showed that values indicating bacterial community abundances (OTUs) and richness (ACE, Chao1) were statistically significant (p=0.0001) in Doenjang and Cheonggukjang. Firmicutes was the most common phylum in both groups, representing 97.02% and 99.67% in the Doenjang and Cheonggukjang groups, respectively. Bacillus was the most dominant genus, accounting for 71.70% and 59.87% in both groups. Linear discriminant (LDA) effect size (LEfSe) analysis was performed to reveal the significant ranking of abundant taxa in different fermented foods. A size-effect threshold of 2.0 on the logarithmic LDA score was used for discriminative functional biomarkers. On the species level, Bacillus subtilis, Tetragenococcus halophilus, and Clostridium arbusti were significantly more abundant in Doenjang than in Cheonggukjang, whereas Bacillus thermoamylovorans, Enterococcus faecium, and Lactobacillus sakei were significantly more abundant in Cheonggukjang than in Doenjang. Permutational multivariate analysis of variance (PERMANOVA) showed that the statistical difference in microbial clusters between the two groups was significant at the confidence level of p=0.001. This research could be used as basic research to identify the correlation between the biochemical characteristics of Korean fermented foods and the distribution of microbial communities.

Antioxidant Activity of Kelp Saccharina japonica Extract Fermented by Probiotic Lactic Acid Bacteria (Probiotic 유산균 발효에 의한 다시마(Saccharina japonica) 추출액의 항산화 활성)

  • Ryu, Dae-Gyu;Park, Seul-Ki;Kang, Min-Gyun;Jeong, Min-Chul;Jo, Du-Min;Jang, Yu-Mi;Jeong, Hee-Jin;Lee, Do-Ha;Kim, Young-Mog
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.53 no.3
    • /
    • pp.361-367
    • /
    • 2020
  • The objective of this study was to investigate the effect of lactic acid bacteria (LAB) fermentation on the antioxidant activity of kelp Saccharina japonica water extract. Three LAB strains that had exhibited superior antioxidant activity in a previous study were selected for the kelp fermentation starter. The antioxidant activity of the fermented extracts was analyzed during fermentation. After 48 h of fermentation, the extract-fermented Lactobacillus plantarum D-11 strains showed the highest antioxidant activity in terms of DPPH (2,2-diphenyl-2-picryl hydrazyl) radical scavenging, ABTS [2,2'-azino-bis(3-ethylbenzothiazoline-6-sulfonic acid)] radical scavenging, oxygen radical absorbance capacity (ORAC) and fluorescence recovery after photobleaching (FRAP) assay. Furthermore, the analysis of total phenolic and flavonoid contents revealed that the enhanced antioxidant activity was mainly due to the increased antioxidant content from fermentation. Thus, this study suggests that probiotic LAB fermentation is an attractive approach for the development of various kelp fermentation products.

Quality and Antioxidant Properties of Fermented Sweet Potato Using Lactic Acid Bacteria (유산균을 이용한 발효 고구마의 품질 특성 및 항산화 활성)

  • Ha, Gi Jeong;Kim, Hyeon Young;Ha, In Jong;Cho, Sung Rae;Moon, Jin Young;Seo, Gwon Il
    • The Korean Journal of Food And Nutrition
    • /
    • v.32 no.5
    • /
    • pp.494-503
    • /
    • 2019
  • The purpose of this study was to investigate the quality and antioxidant properties of three fermented sweet potato cultivars (Shinyulmi, Hogammi, and Shinjami) using lactic acid bacteria. During the fermentation, the pH was lowered and the titratable acidity increased. The viable cell counts of lactic acid bacteria increased 8.44-9.62 log CFU/g. Organic acid content (especially lactic acid) of sweet potatoes increased by fermentation. Also, ${\gamma}$-Aminobutyric acid increased more than 8.6 times by fermentation in all samples. The total polyphenol and flavonoid contents of sweet potato, showed insignificant changes in all samples by fermentation. ABTS radical scavenging activity of all samples slightly decreased by fermentation, but not significantly. DPPH radical scavenging activity decreased slightly by fermentation except Shinyulmi. However, when compared with the varieties, Shinjami showed the highest activity. The reducing power of Shinjami decreased slightly by fermentation, but activity was the highest among all samples. Based on these results, most of the chemical properties and functionality of fermented sweet potato are retained after fermentation, although some antioxidant activity decreases. We suggest that three fermented sweet potato cultivars (Shinyulmi, Hogammi, and Shinjami) using lactic acid bacteria can be used in various applications because of their effective functional properties.

Microorganisms Involved in Natural Fermentation of Asparagus cochinchinensis Roots and Changes in Efficacies after Fermentation (천문동 뿌리의 자연발효에 관여하는 미생물 및 발효 후 효능 변화)

  • Kim, Min-Jee;Shin, Na Rae;Lee, Myeong-Jong;Kim, Hojun
    • Journal of Korean Medicine for Obesity Research
    • /
    • v.18 no.2
    • /
    • pp.96-105
    • /
    • 2018
  • Objectives: The aim of this study was to examine the effect of Asparagus cochinchinensis (AC) and fermented AC (fAC) on microorganisms and efficacies. Methods: AC was fermented for four weeks without using any bacterial strains. Then we investigated fermentation characteristics including potential of hydrogen (pH), total sugar, microbial profiling and antioxidant compound contents such as total polyphenol and total flavonoid. The anti-obesity effects of AC and fAC were evaluated by using Oil Red O staining in 3T3-L1 adipocyte. Also anti-diabetic effects of them were evaluated by using 2-[N-(7-nitrobenz-2-oxa-1,3-diazol-4-yl)amino]-2-deoxy-d-glucose (2-NBDG) uptake in C2C12 skeletal muscle cell. Results: Both pH and total sugar of fAC were decreased significantly compared to unfermented AC. And the abundance of total bacteria and lactic acid bacteria increased during fermentation, especially Lactobacillus plantarum. Also fermentation of AC increased the content of total polyphenol. On the metabolic aspects, we found that AC and fAC suppressed fat accumulation. Conclusions: After four weeks of fermentation, AC increased concentrations of active compounds, altered microbial composition, and inhibited fat accumulation such as triglyceride. These results indicate that fermentation of AC might be a beneficial therapeutic approach for obesity.

Effect of Colored Barley Flours on Quality Characteristics of Fermented Yogurt by Lactobacillus spp.

  • Lee, Nayoung;Lee, Mi-Ja
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.59 no.1
    • /
    • pp.66-72
    • /
    • 2014
  • Quality characteristics of yogurt with added colored barely flour was investigated during fermentation by lactic acid bacteria. Chemical properties such as moisture, crude protein, starch, ash and ${\beta}$-glucan contents was measured. pH, acidity, brix, Hunter color value and growth of lactic acid bacteria in yogurt was investigated during fermentation by L. acidophilus, L. bulgaricus, and S. thermophilus mixed culture. Crude protein contents of Daeanchal and Boseokchal was 16.16 and 12.17%, respectively. Starch contents of daeanchal were shown lower score. The pH of yogurt by addition of barley flour (Daeanchal) addition 0 and 20% were 6.66 and 6.40, respectively. The pH of yogurt supplemented with barley flour tended to be lower than before control which was not added barely flours and oligosaccharide in yogurt. Titratable acidity of yogurt added barley flour was higher compared with that of control. Brix of yogurt was decreased during fermentation by lactic acid bacteria. Lightness of yogurt added barley flour (Daeanchal) addition 0 and 20% were 83.25 and 69.83, respectively. The original microbial population of the yogurt during 0, 5, 8, and 15 hr fermentation were 7.48, 7.79, 8.15, and 8.71 Log CFU/g, respectively. Moreover, the addition of colored barley flour was to promote the proliferation of lactic acid bacteria in yogurt. In our research, addition of colored barley flours added into the yogurt may also have contributed to growth of lactic acid bacteria.

Analysis of Nodakenetin from Samultangs Fermented by Lactose Bactera Strains (유산균 발효에 의한 사물탕들부터 노다케네틴의 분리 및 함량분석)

  • Kim, Dong-Seon;Roh, Joo-Hwan;Cho, Chang-Won;Ma, Jin-Yeul
    • The Korea Journal of Herbology
    • /
    • v.27 no.1
    • /
    • pp.35-39
    • /
    • 2012
  • Objectives : The purpose of this study was to investigate the changes in the contents of constituents in Samultang and its fermentations with 10 species of lactic acid bacteria. Methods : Ten strains of lactic acid bacteria, Lactobacillus casei, L. acidophilus, L. casei, L. plantarum, L. amylophilus, L. curvatus, L. delbruekil subsp. lactis, L. casei, B. breve, and B. thermophilum, were used for the fermentation of Samultang. The increased and decreased constituents were identified using HPLC/DAD and various liquid chromatographic techniques, and the structure was elucidated using NMR and MS. These compounds were quantitatively analyzed using an HPLC/DAD system. Results : A remarkably increased component was identified to be nodakenetin and a decreased component was determined to be nodakenin. The fermentation of the ten lactic acid bacteria demonstrated that the decomposable rate of these two compounds in fermented Samultang were different. Samultang fermented by L. plantarum showed the most remarkable changes. Conclusion : Nodakenetin was identified as bioconversion component after fermentation and L. plantarum was discovered the best bacteria to increase the component.