• Title/Summary/Keyword: Lactobacillus Fermentation

Search Result 963, Processing Time 0.024 seconds

Fermentation properties of rice-added yogurt using two types of blended lactic acid bacteria as a starter

  • Park, Yun Hwan;Choi, Jung Seok
    • Korean Journal of Agricultural Science
    • /
    • v.48 no.2
    • /
    • pp.273-281
    • /
    • 2021
  • These days, different types of yogurt are being manufactured by adding various starters and functional ingredients for health. The purpose of this study was to prepare yogurt added with rice followed by fermentation with two types of starters and to examine its attributes. Ten percent of skim milk powder and 0, 2.5, 5.0, 7.5, or 10% rice were mixed in water (w/v) and then inoculated with two types of starter: 1) Type A, Streptococcus thermophiles and Lactobacillus delbrueckii ssp. bulgaricus as starter; and 2) Type B, Streptococcus thermophiles, Lactobacillus acidophilus, and Bifidobacteium animalis ssp. lactis as starter. The pH of B type yogurt was lower (p < 0.05) than that of A type yogurt from 6 hours to 14 hours after fermentation. The number of microorganisms in all fermented milk showed maximum increases at 2 and 6 hours of fermentation (p < 0.05). The number of microorganisms in fermented milk peaked at 6 hours after fermentation and maintained this level thereafter. There was no effect of rice addition on microbial growth or acidity of the fermented milk. Sensory attributes of yogurt samples with and without added rice were not significantly different. This experiment showed that the production efficiency of yogurt with added rice was not different when two different types of starters were used to manufacture yogurt.

Antioxidant activities and physicochemical properties of chocolate fermented by Lactobacillus plantarum CK10 (Lactobacillus plantarum CK10을 이용한 초콜릿 발효 산물의 항산화 활성 및 성분 분석)

  • Kang, Hye Rim;Koh, So Yae;Ryu, Ji-yeon;Osman, Ahmed;Lee, Chang Kyu;Lim, Ji Hee;Kim, Hyeon A;Im, Geun Hyung;Cho, Somi Kim
    • Food Science and Preservation
    • /
    • v.23 no.4
    • /
    • pp.576-584
    • /
    • 2016
  • In this study, antioxidant activities and physicochemical properties of chocolate fermented with Lactobacillus plantarum CK10 were investigated. The pH level decreased from $5.26{\pm}0.02$ to $3.98{\pm}0.06$ during fermentation while titratable acidity increased from $5.36{\pm}0.19$ to $13.31{\pm}0.34$. The total polyphenol and flavonoid contents slightly increased during fermentation, but it was numerically negligible. Slight increase and decrease in the radical scavenging activities of chocolate, against DPPH-, ABTS-, and alkyl-radical, were observed during 32 hr of fermentation, but the changes were not statistically relevant. Composition ratios (% area by GC analysis) of lactic acid, xanthosine, and theobromine increased with fermentation time while hydroxymethylfurfural (HMF) and caffeine decreased after 32 hr of fermentation, in the order of xanthine (22.7%), theobrome (20.0%), lactic acid (14.9%), HMF (9.1%) and caffeine (9.0%). However, there was no remarkable changes in theobromine and caffeine contents in chocolate during fermentation.

Isolation and Identification of Lactic Bacteria Containing Superior Activity of the Bile Salts Deconjugation (담즙산 분해능이 뛰어난 젖산균의 분리 및 동정)

  • 하철규;조진국;채영규;허강칠
    • Food Science of Animal Resources
    • /
    • v.24 no.2
    • /
    • pp.164-170
    • /
    • 2004
  • The purpose of this study is to isolate probiotic lactic acid bacteria (LAB) that produced bile salts hydrolase. One hundred twenty strains were initially isolated from human feces. Based on their resistance of acid, tolerances of bile salts, and inhibitory activity against Escherichia coli, five strains were selected. A strain producing highest activity of bile salts hydrolase was identified as Lactoacillus plantarum using API carbohydrate fermentation pattern and 16S rRNA sequences, and named CK102. Lactobacillus plantarum CK102 survived at a level of 1.36${\times}$10$\^$8/ CFU/$m\ell$ in pH 2 buffer for 6 h and showed exhibited excellent bile tolerance. When L plantarum CK102 was cultured with E. coli in MRS broth, no viable cells of E. coli was detected after 18 h fermentation. These results suggest that Lactobacillus plantarum CK 102 may be commercially used for the probiotic culture.

Process Optimization of Ginseng Berry Extract Fermentation by Lactobacillus sp. Strain KYH isolated from Fermented Kimchi and Product Analysis (발효 김치로부터 분리한 Lactobacillus sp. Strain KYH를 이용한 진생베리 추출물 최적 발효 공정 확립 및 생성물의 특성 분석)

  • Ha, Yoo-Jin;Yoo, Sun-Kyun;Kim, Mee Ree
    • Journal of the East Asian Society of Dietary Life
    • /
    • v.26 no.1
    • /
    • pp.88-98
    • /
    • 2016
  • The pharmacological effects of ginseng berry have been known to improve psychological function, immune activities, cardiovascular conditions, and certain cancers. It is also known that fermentation improves the bioavailability of human beneficial natural materials. Accordingly, we investigated the optimal fermentation conditions of ginseng berry extract with strain isolated from conventional foods. We also analyzed the fermentation product and its antioxidant activity. The bacterium isolated from fermented kimchi was identified as Lactobacillus sp. strain KYH. To optimize the process, fermentation was performed in a 5 L fermenter containing 3 L of ginseng berry extract at 200 rpm for 72 hr. Under optimized conditions, batch and fed-batch fermentations were performed. After fermentation, organic acids, amino acids, sugars, ginsenosides, and antioxidant activity were evaluated. The optimum fermentation conditions were determined as pH 7.0 and a temperature of $30^{\circ}C$, respectively. After fermentation, the amounts and compositions of organic acids, amino acids, sugars, ginsenosides, and antioxidant activity were altered. In comparing the distribution of ginsenosides with that before fermentation, the ginsenoside Re was a major product. However, amounts of ginsenosides Rb1, Rc, and Rd were reduced, whereas amounts of ginsenosides Rh1 and Rh2 increased. Total phenol content increased to 43.8%, whereas flavonoid content decreased to 19.8%. The DPPH radical scavenging activity and total antioxidant activity increased to 27.2 and 19.4%, respectively.

Isolation of Biogenic Amine Non-producing Lactobacillus brevis SBB07 and Its Potential Probiotic Properties (바이오제닉 아민 비생성 Lactobacillus brevis SBB07의 분리 및 잠재적 프로바이오틱스 특성 분석)

  • Yang, Hee-Jong;Jeong, Su-Ji;Jeong, Seong-Yeop;Ryu, Myeong Seon;Jeong, Do-Youn
    • Journal of Life Science
    • /
    • v.28 no.1
    • /
    • pp.68-77
    • /
    • 2018
  • The purpose of this study was to isolate the probiotic lactic acid bacteria, and verify the possibility of the final selection strain as probiotic material. For screening of biogenic amines non-producing microorganisms, 42 lactic acid bacteria were isolated from various berries, extract and vinegar grown in Sunchang. Isolates were investigated for various physiological activities such as extracellular enzyme, antimicrobial and antioxidant activities, and 5 isolates were firstly screened. SBB07 was finally selected by analyzing the biogenic amine, and named Lactobacillus brevis SBB07 by 16S rRNA sequencing analysis. Next, SBB07 was assayed for their survival ability when exposed to acidic and bile conditions as well as heat and antibiotic resistance. As a result, SBB07 showed more than 86% and 54% higher survival rate in acidic condition at pH 2.0 and bile resistance with 0.5% oxgall. In addition, SBB07 showed a survival rate of more than 113% in $60^{\circ}C$, and also confirmed that it has resistant to various antibiotics. As a result of confirming the possibility of prebiotics, SBB07 showed the best utilization of GOS as a prebiotic substrate, and utilization of FOS and inulin were also high. These results suggest that SBB07 have good potential for application as probiotic lactic acid bacteria.

Melanin Production Inhibitory Activity of the Dendropanax morbifera Leaf Extract Fermented by Lactobacillus plantarum (Lactobacillus plantarum으로 발효시킨 황칠나무 잎 추출물의 피부 미백 관련 효과)

  • Im, Do youn;Lee, Kyoung in
    • Korean Journal of Pharmacognosy
    • /
    • v.47 no.1
    • /
    • pp.18-23
    • /
    • 2016
  • This study was conducted to investigate the tyrosinase inhibitory and melanin production inhibitory activity of the distilled water extract of Dendropanax morbifera leaf (DMW) and the fermented extract by Lactobacillus plantarum (DMF). DMF was prepared by inoculation of L. plantarum after the extraction procedure with distilled water. Fermentation for 48 hours at $37^{\circ}C$ is the most effective condition in this study. In DPPH radical scavenging ability, $SC_{50}$ values of the fermented DMF was $37.9{\mu}g/ml$ as a result of more effective than DMW extract ($52.6{\mu}g/ml$). Moreover, tyrosinase inhibitory activity of DMF showed higher activity than DMW. In nontoxic concentration range, DMF showed strong melanin production inhibitory effect in ${\alpha}$-melanocyte stimulating hormone-stimulated B16F10 cell. As a result, the fermentation of the distilled water extract of D. morbifera leaf by L. plantarum could be applicable to functional materials production for skin-whitening agents.

The Effect of Yulmoo Extract and Cold Shock on the Growth of Kimchi Lactic Bacteria (열무 추출물과 Cold Shock가 김치 젖산균의 생육에 미치는 영향)

  • Kim, Eun-Jung;Hahn, Young-Sook
    • Korean journal of food and cookery science
    • /
    • v.23 no.1 s.97
    • /
    • pp.78-82
    • /
    • 2007
  • Yulmoo Kimchi becomes sour without carbonated taste when ripened at room temperature after being placed under cold temperature. The carbonated taste of Kimchi is reported to come from the hetero lactic fermentation of Leuconostoc strains. Yulmoo extract was made with methanol and added to four lactic bacteria strains originating from kimchi. The bacteria were also subjected to $1^{\circ}C$ for 24 hours as a cold shock treatment. after which Leuconostoc mesenteroide subsp. dextranicum KCCM 40708, Lactobacillus brevis KCTC 3102, Lactobacillus plantarum KCTC 3108, and Leuconostoc lactics KCTC 3528 strains showed a growth inhibition with the addition of Yulmoo extract at the concentration of 250-4,000 ppm. Leuconostoc mesenteroide subsp. dextranicum KCCM 40708, Lactobacillus brevis KCTC 3102, Lactobacillus plantarum KCTC 3108, and Leuconostoc lactics KCTC 3528, a strains appearing at the early stage of Kimchi fermentation, showed a higher growth inhibition following Yulmoo treatment in combination with the cold shock.

Enhanced Production of Galactooligosaccharides Enriched Skim Milk and Applied to Potentially Synbiotic Fermented Milk with Lactobacillus rhamnosus 4B15

  • Oh, Nam Su;Kim, Kyeongmu;Oh, Sangnam;Kim, Younghoon
    • Food Science of Animal Resources
    • /
    • v.39 no.5
    • /
    • pp.725-741
    • /
    • 2019
  • In the current study, we first investigated a method for directly transforming lactose into galacto-oligosaccharides (GOS) for manufacturing low-lactose and GOS-enriched skim milk (GSM) and then evaluated its prebiotic potential by inoculating five strains of Bifidobacterium spp. In addition, fermented GSM (FGSM) was prepared using a potentially probiotic Lactobacillus strain and its fermentation characteristics and antioxidant capacities were determined. We found that GOS in GSM were metabolized by all five Bifidobacterium strains after incubation and promoted their growth. The levels of antioxidant activities including radical scavenging activities and 3-hydroxy-3-methylglutaryl-CoA reductase inhibition rate in GSM were significantly increased by fermentation with the probiotic Lactobacillus strain. Moreover, thirty-nine featured peptides in FGSM was detected. In particular, six peptides derived from ${\beta}$-casein, two peptides originated from ${\alpha}s_1$-casein and ${\kappa}$-casein were newly identified, respectively. Our findings indicate that GSM can potentially be used as a prebiotic substrate and FGSM can potentially prevent oxidative stress during the production of synbiotic fermented milk in the food industry.

Analysis of Bioconversion Components of Fermentation Hwangryunhaedok-tang (발효 황련해독탕의 생물 전환 성분분석)

  • Lee, Kwang Jin;Lee, BoHyoung;Jung, Pil Mun;Lian, Chun;Ma, Jin Yeul
    • YAKHAK HOEJI
    • /
    • v.57 no.4
    • /
    • pp.293-298
    • /
    • 2013
  • Hwangryunhaedok-tang (HRT) is a traditional herbal medicine, which has been known as a useful prescription for anti-biotic, anti-inflammatory, anti-oxidative and immunosuppressive activity. In this study, the variation in the amount of eight bioactive components of Hwangryunhaedok-tang (HRT) and its fermentation HRT with Lactobacillus casei KFRI 127, Lactobacillus curvatus KFRI 166 and Lactobacillus confuses KFRI 227 was investigated via high-performance liquid chromatography coupled with diode array detection (HPLC-DAD). Simultaneous qualitative and quantitative analysis of eight bioactive components; geniposide, genipin, baicalin, wogonoside, palmatine, berberine, baicalein and wogonin was achieved by comparing their retention times ($t_R$) and UV spectra with those of the standard components. All calibration curve of standard components showed good linearity ($r^2$ >0.979). As a result, the geniposide amount was $15.52{\pm}0.19{\mu}/mg$ that as a main components in HRT. The wogonoside was decreased by 29.28~58.35% with Lactobacillus casei KFRI 127 and L. confuses KFRI 227 ($3.17{\pm}0.31{\mu}g/mg$ and $3.55{\pm}0.13{\mu}g/mg$) compared with the original HRT ($5.02{\pm}0.14{\mu}g/mg$). Otherwise wogonin was increased by 16.28~41.86% with Lactobacillus casei KFRI 127 and L. confuses KFRI 227 ($0.61{\pm}0.01{\mu}g/mg$ and $0.50{\pm}0.02{\mu}g/mg$) compared with the original HRT($0.43{\pm}0.00{\mu}g/mg$). HRT fermented with L. casei KFRI 127 and L. confuses KFRI 227 were evaluated as creating the changes in wogonoside to that aglycon wogonine. In the fermented HRT using Lactobacillus acidophilus KFRI 166, the genipin was only detected, among 3 species of fermentation strains. Thus, these results considered that the strains 166 were exhibited the remarkable changes in genipin.

The Combined Effect of Heat Treatment and Irradiation on the Inactivation of Major Lactic Acid Bacteria Associated with Kimchi Fermentation (김치의 숙성관련 주요 젖산균 살균에 대한 가열처리와 방사선 조사의 병용효과)

  • Byun, Myung-Woo;Cha, Bo-Sook;Kwon, Joong-Ho;Cho, Han-Ok;Kim, Woo-Jung
    • Korean Journal of Food Science and Technology
    • /
    • v.21 no.2
    • /
    • pp.185-191
    • /
    • 1989
  • The combined effects of heat treatment and ${\gamma}-irradiation$ on the inactivation of major lactic acid bacteria associated with Kimchi fermentation were investigated. The radiosensitivities $(D_{10}\;values)$ of lactic acid bacteria in case of a single treatment of irradiation were 0.61 kGy in Lactobacillus brevis, 0.60 kGy in Lactobacillus plantarum, 0.50 kGy in Leuconostoc mesenteroides, 0.4 kGy in Pediococcus cerevisiae, 0.39 kGy in Streptococcus faecalis. The heat sensitization $(D_{min}\;values)$ by a single treatment of heat ranged 9.2-15.6 at $50^{\circ}C$ and 3.7-5.5 at $60^{\circ}C$. Synegistic effects were shown in the radiosensitivities of Streptococcus faecalis, Pediococcus cerevisiae, Lactobacillus plantarum, and Lactobacillus brevis by the combined treatment(Dose multiplying factors ranged $1.20{\sim}1.56$). It seems, therefore, that the combined treatment can be applied to the radiation preservation of Kimchi, minimizing the side-effects like physical changes induced by the high dose irradiation or heat treatment.

  • PDF