• Title/Summary/Keyword: Lactobacillus Fermentation

Search Result 963, Processing Time 0.026 seconds

Inhibitory Activities of Digestive Enzymes and Antioxidant Activities of Fermented Beverages Using Momordica charantia L. (여주를 첨가한 발효음료의 소화효소 억제와 항산화 활성)

  • Park, Suin;Yeo, Seoungsoon;Lee, Youngseung;Jeong, Yoonhwa;Kim, Misook
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.46 no.11
    • /
    • pp.1308-1315
    • /
    • 2017
  • This study was conducted to develop Momordica charantia L. juice fermented by four Lactobacillus species such as Lactobacillus paracasei (LPA), Lactobacillus plantarum (LPL), Lactobacillus rhamnosus (LRH), and Lactobacillus reuteri (LRE) as well as to investigate their inhibitory effects against digestive enzymes and antioxidant activities. Fermentation was performed at $37^{\circ}C$ without nutrient supplementation for 72 h. The pH and total lactic acid contents were within the ranges of 3.75~3.96 and 5.21~10.04% in fermented juices, respectively. The type of starter culture and fermentation time induced changes in flavonoid contents more than total phenolic contents. All juices fermented for 48 h strongly inhibited ${\alpha}$-glucosidase activity with the percentage of inhibition ranging of 91.24~95.05%. Antioxidant activities of all juices mostly increased after 48 h of fermentation. Our results suggest that fermented juice possesses inhibitory activity against digestive enzymes and antioxidant activity, and they can be used as health functional beverages.

The Effect of Extracts of Berberis koreana Bark by Lactobacillus Fermentation on the Concentration of Serotonin and Melatonin in the Serum of Treated ICR Mice (유산균 발효된 매자나무 추출물이 마우스 혈청중의 Melatonin 및 Serotonin의 함량에 미치는 영향)

  • Ling, Jin;Kim, Ji-Seon;Seo, Yong-Chang;Choi, Woon-Yong;Ahn, Ju-Hee;Ma, Choong-Je;Yoon, Chang-Soon;Lee, Hyeon-Yong
    • Korean Journal of Medicinal Crop Science
    • /
    • v.19 no.2
    • /
    • pp.117-125
    • /
    • 2011
  • This study was to investigate the effect of fermentation extracts on the concentration of serotonin and melatonin in the serum of the ICR mice. The ICR mice were divided into water control group, lactobacillus fermentation solution including (Lactobacillus paracasei and Bifidobacterium longum B6) control group, positive control group (milk and doxylamine succinate), negative control group (caffein) and the groups treated with the extracts of Berberis koreana bark (WE: water extracts, FE-L.P: fermentation extracts of Lactobacillus paracasei, FE-B.L: fermentation extracts of Bifidobacterium longum B6). After ten-day feeding treatment, the mean concentration of serotonin for water control, WE, FE-L.P and FEB. L group was 134.72, 183.01, 232.09 and $223.78 ng/m{\ell}$, respectively. The mean concentration for FE-L.P and FE-B.L group were approximately 66% larger than that for water control group. The mean concentration of melatonin for water control, WE, FE-L.P and FE-B.L group was 76.92, 106.66, 157.56 and $141.81pg/m{\ell}$, respectively. The mean concentration of melatonin for FE-L.P and FE-B.L group were also larger than that for water control group. Our results indicated that the fermentation extracts of Berberis koreana bark have relatively greater potential to induce secretion of serotonin and melatonin. Therefore, the fermentation extracts have antidepressant effect.

A Comparative Study between Microbial Fermentation and Non-Fermentation on Biological Activities of Medicinal Plants, with Emphasis on Enteric Methane Reduction (천연 약용식물의 미생물 발효를 통한 장내 메탄 생성 억제 효과 비교 연구)

  • Lee, A-Leum;Park, Hae-Ryoung;Kim, Mi-So;Cho, Sangbuem;Choi, Nag-Jin
    • Korean Journal of Organic Agriculture
    • /
    • v.22 no.4
    • /
    • pp.801-813
    • /
    • 2014
  • A study was conducted to improve the biological activity of two medicinal plants, Eucommia ulmoides Oliv. and Glycyrrhiza uralensis, by fermentation. The biological activity was assessed by determining antibacterial, antioxidant and antimethanogenic properties. Fermentation was achieved by adding the plant materials in MRS broth at 10% (w/v) and different starter cultures at 1% (v/v). Condition for fermentation were incubation temperature of $30^{\circ}C$ and agitation at 150 rpm for 48 h. Six starter cultures, Weissella confusa NJ28 (Genbank accession number KJ914897), Weissella cibaria NJ33 (Genbank accession number KJ914898), Lactobacillus curvatus NJ40 (Genbank accession number KJ914899), Lactobacillus brevis NJ42 (Genbank accession number KJ914900), Lactobacillus plantarum NJ45 (Genbank accession number KJ914901) and Lactobacillus sakei NJ48 (Genbank accession number KJ914902) were used. Antibacterial activity was observed in L. curvatus NJ40 and L. plantarum NJ45 only as opposed to other treatments, including the non-fermented groups, which showed no antibacterial activity. Both plants showed antioxidant activity, although E. ulmoides Oliv. had lower activity than G. uralensis. However, fermentation by all strains significantly improved (p<0.05), antioxidant activity in both plants compared to non-fermented treatment. Six treatments were based on antibacterial activity results, selected for in vitro rumen fermentation; 1) non-fermented E. ulmoides, 2) fermented E. ulmoides NJ40, 3) fermented E. ulmoides NJ45, 4) non-fermented G. uralensis, 5) fermented G. uralensis NJ40, 6) fermented G. uralensis NJ45. A negative control was also added, making a total of 7 treatments for the in vitro experiment. Medicinal plant-based treatments significantly improved (p<0.05) total volatile fatty acid (VFA) concentration. Significant methane reduction per mol of VFA were observed in G. uralensis (p<0.05). Based on the present study, fermentation improves the biological activity of E. ulmoides Oliv. and G. uralensis. Fermented G. uralensis could also be applied as an enteric methane mitigating agent in ruminant animals.

Natural Lactic Acid Bacteria Population and Silage Fermentation of Whole-crop Wheat

  • Ni, Kuikui;Wang, Yanping;Cai, Yimin;Pang, Huili
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.28 no.8
    • /
    • pp.1123-1132
    • /
    • 2015
  • Winter wheat is a suitable crop to be ensiled for animal feed and China has the largest planting area of this crop in the world. During the ensiling process, lactic acid bacteria (LAB) play the most important role in the fermentation. We investigated the natural population of LAB in whole-crop wheat (WCW) and examined the quality of whole-crop wheat silage (WCWS) with and without LAB inoculants. Two Lactobacillus plantarum subsp. plantarum strains, Zhengzhou University 1 (ZZU 1) selected from corn and forage and grass 1 (FG 1) from a commercial inoculant, were used as additives. The silages inoculated with LAB strains (ZZU 1 and FG 1) were better preserved than the control, with lower pH values (3.5 and 3.6, respectively) (p<0.05) and higher contents of lactic acid (37.5 and 34.0 g/kg of fresh matter (FM), respectively) (p<0.05) than the control. Sixty LAB strains were isolated from fresh material and WCWS without any LAB inoculation. These LAB strains were divided into the following four genera and six species based on their phenotypic, biochemical and phylogenetic characteristics: Leuconostoc pseudomesenteroides, Leuconostoc citreum, Weissella cibaria, Lactococcus lactis subsp. lactis, Lactobacillus buchneri, and Lactobacillus plantarum subsp. plantarum. However, the prevalent LAB, which was predominantly heterofermentative (66.7%), consisted of Leuconostoc pseudomesenteroides, Leuconostoc citreum, Weissella cibaria, and Lactobacillus buchneri. This study revealed that most of isolated LAB strains from control WCWS were heterofermentative and could not grow well at low pH condition; the selective inoculants of Lactobacillus strains, especially ZZU 1, could improve WCWS quality significantly.

Isolation and Identification of Lactic Acid Bacteria from Spent Mushroom Substrate for Silage Making and Determination of Optimal Medium Conditions for Growth

  • Kim, Young-Il;Kwak, Wan-Sup
    • Journal of Animal Science and Technology
    • /
    • v.54 no.6
    • /
    • pp.435-442
    • /
    • 2012
  • This study was conducted to isolate and identify the lactic acid bacteria (LAB) from spent mushroom substrates (SMS) for the effective anaerobic fermentation to utilize SMS as an animal feed and to determine the optimal medium conditions for their growth. At first, a total of 23 strains were isolated from the ensiled SMS based on the LAB counts and pH tested. Then, a total of 16 strains which rapidly produce lactate and decreased the pH, were selected for a screening test. The optical density (OD), pH, and yellow clear zone were tested for the selected 16 strains. Among the strains, KU5 strain had wider yellow clear zone and lower pH and KU13 strain had higher OD at 24 hr of incubation and wider yellow clear zone compared to other strains and control strain (Lactobacillus plantarum KCCM 12116). Accordingly, KU5 and KU13 strains were finally selected. The KU5 and KU13 were identified as Lactobacillus plantarum by the 16S rRNA sequencing. The KU5 strain was named as Lactobacillus plantarum KU5, and the KU13 strain was named as Lactobacillus plantarum KU13. Lactobacillus plantarum KU5 and Lactobacillus plantarum KU13 were registered at the National Center for Biotechnology Information (NCBI). Access number of Lactobacillus plantarum KU5 was HQ542227 and that of Lactobacillus plantarum KU13 was HQ542228. The optimal medium conditions for growth of KU5 and KU13 were soybean meal 2% and formulated feed 2%, respectively.

Influences of Ginseng Component on Cell Growth and Acid Production by Lactobacillus casei Burins Yogurt Fermentation (Yogurt 제조시 인삼성분이 Lactobacillus casei의 증식과 산생성에 미치는 영향)

  • 소명환
    • The Korean Journal of Food And Nutrition
    • /
    • v.1 no.2
    • /
    • pp.76-85
    • /
    • 1988
  • In order to obtain the basic data for the preparation of yogurt containing ginseng component, the effect of ginseng component on cell growth of Lactobacillus casei YIT 9018 and on lactic acid production were investigated. Initial cell growth and acid production were markedly inhibited by the addition of ethanol extracts in the level of 8% into 15% skim milk. Crude saponin did not show any inhibitory effect on cell growth and acid production, but ether layer fraction showed inhibitory effect. It was thought to be more advantageous to add ginseng extracts after the fermentation of milk than before. The addition of ginseng extract at 8% level into liquid yogurt was most suitable in organoleptic test. Cell viability was not affected by the addition of ethanol extracts up to 8% level during storage of liquid yogurt.

  • PDF

Lactic Fermentation of Steamed Barley with an Enzyme and a Lactobacillus (전분분해효소와 유산균에 의한 보리의 유산발효)

  • Lee, Hyeong-Chun;Gu, Yeong-Jo;Sin, Dong-Hwa
    • The Korean Journal of Food And Nutrition
    • /
    • v.1 no.2
    • /
    • pp.43-49
    • /
    • 1988
  • Fermented barley food was produced by the combining action of an enzyme and a lactobacillus. When Lactobacillus sp. L-5 and commercial liquefying amylase from Tae Pyeong Yang Chemical Co. were selected, inoculated on steamed barley and cultivated at 37$^{\circ}C$ for 48hrs, the fermented product of good quality was obtained. In batch cultivation using rotary drum fermentor, viable cell count reached 1.1$\times$10CFU/g after 12hrs' cultivation, and specific growth rate in logarithmic phase was 0.6hr-1. Viable cell count, acidity, pH, concentration of reducing sugar and viscosity of the 48hrs' fermentation product from rotary drum fermentor was 4.3$\times$108CFU/g, 1.17%, 3.1, 10.7% and 1430cp.

  • PDF

Monitoring of Bioluminescent Lactobacillus plantarum in a Complex Food Matrix

  • Moon, Gi-Seong;Narbad, Arjan
    • Food Science of Animal Resources
    • /
    • v.37 no.1
    • /
    • pp.147-152
    • /
    • 2017
  • A bioluminescent Lactobacillus plantarum (pLuc2) strain was constructed. The luminescent signal started to increase during the early exponential phase and reached its maximum in the mid-exponential phase in a batch culture of the strain. The signal detection sensitivity of the strain was the highest in PBS (phosphate buffered saline), followed by milk and MRS broth, indicating that the sensitivity was influenced by the matrix effect. The strain was used in millet seed fermentation which has a complex matrix and native lactic acid bacteria (LAB). The luminescent signal was gradually increased until 9 h during fermentation and abolished at 24 h, indicating that the strain could be specifically tracked in the complex matrix and microflora. Therefore, the bioluminescent labeling system can be used for monitoring LAB in food and dairy sciences and industries.

Isolation and characterization of bacteriophage infecting Lactobacillus plantarum KCCM 12116

  • Oh, Jiyoung;Park, Jong-Hyun
    • Korean Journal of Food Science and Technology
    • /
    • v.53 no.3
    • /
    • pp.348-355
    • /
    • 2021
  • Bacteriophages (phages) are known determinants of kimchi microbial ecology. Lactobacillus plantarum is related to kimchi over-acidification during the late stages of kimchi fermentation. A phage infecting Lac. plantarum was isolated from kimchi and characterized. The phage population for kimchi in a market was 2.3 log particles/mL, which corresponded to 32% of the bacterial population on a log scale. The isolated phage was designated as ΦLP12116. ΦLP12116 which belonged to the Siphoviridae family and has a very narrow host range, infecting only Lac. plantarum. The phage was stable at a lactic acid concentration of 1.0% and pH 4.0 at 4℃, indicating that it could survive in kimchi. In the kimchi extract broth treated by the phage, the growth of Lac. plantarum KCCM 12116 was inhibited by 2.2 log CFU/mL compared to the growth in non-phage-treated broth. Therefore, this study suggests that the growth of Lac. plantarum, which is known as an acid-producing strain during late fermentation in kimchi, may be controlled using the phage.

Behavior of Listeria monocytogenes in skin milk during fermentation by Lactobacillus bulgaricus and Streptococcus lactis (Lactobacillus bulgaricus와 Streptococcus lactis 발효탈지유에서의 Listeria monocytogenes의 생존추이)

  • 박경식
    • Journal of environmental and Sanitary engineering
    • /
    • v.12 no.1
    • /
    • pp.85-95
    • /
    • 1997
  • Behavior of Listeria monocytogenes in Skim milk during fermentation by Lactobacillus bulgaricus YI-2 and Streptococcus lactis FYI-1 were determined. Autoclaved skim milk was inoculated with ca. 10$^{3}$ L. monocytogenes (Strain LM91-1 or LM 96-2) cells/ml, and with 5.0, 1.0, 0.5 or 0.1% of a milk culture of either L. bulgaricus TI-2 or S. lactis FYI-1. Skim milk containing ca. 10$^{3}$ L. monocytogenes was incubated at 37 or 42$\circ $C for 15 h with L. bulgaricus YI-2, and at 21 or 30$\circ $C for 15 h with S. lactis FYI-1. Cultured skim milks were stored at 4$\circ $C in the refrigerater. Samples were plated on Oxford Agar with oxford antimicrobic supplement to enumerate L. monocytogenes and on either modified MRS agar to enumerate lactic acid bacteria. L. monocytogenes survived the 15-h fermentation with S. lactis FYI-1 in all combinations of level of inoculum and temperature of incubation, but inhibition of growth ranged from 94 to 100%. When incubated with over the 1.0% of L. bulgaricus, L. monocytogenes inhibited or disappeared in fermented skim milk from 9 h after incubation. Especially, incubation at 42$\circ $C with 5.0% L. bulgaricus YI-2 as inoculum appeared to be the most effective inhibitory combination for strain LM 91-1, causing 100% inhibition in growth based on maximum papulation attained. In most instances of incubated with L. bulgaricus YI-2, growth of the pathogene appeared to be completely inhibited when the pH dropped below 4.38.

  • PDF