• Title/Summary/Keyword: Lac. sakei

Search Result 5, Processing Time 0.019 seconds

Characteristics of Cabbage Juice Fermented by Lactic Acid Bacteria from Kimchi (김치유래 Lactic acid bacteria에 의한 양배추 즙의 발효특성)

  • Im, Hye Eun;Oh, Yu Ri;Kim, Na Young;Han, Myung Joo
    • Journal of the Korean Society of Food Culture
    • /
    • v.28 no.4
    • /
    • pp.401-408
    • /
    • 2013
  • The objective of this study was to determine the quality characteristics of cabbage juice fermented by lactic acid bacteria from Kimchi (Leuconostoc mesenteroides, Lactobacillus sakei SL1103, Lactobacillus plantarum LS5, and mixed starter). Cabbage juice was inoculated with lactic acid bacteria and fermented at 30 for 72 hrs. Changes in lactic acid bacteria number, pH, titratable acidity, Brix, and color during fermentation were analyzed. After fermentation for 24 hrs, cabbage juice fermented by mixed starter showed the highest number of lactic acid bacteria (9.45 log CFU/mL). The pH of all cabbage juice also decreased to 3.88~4.19 sharply, while cabbage juice fermented by Lac. sakei SL1103 showed the highest Brix ($8.38^{\circ}Bx$). Cabbage juice fermented by mixed starter showed the highest L value (56.83). In the sensory evaluation, cabbage juice fermented by a mixed starter (Leu. mesenteroides, Lac. sakei SL1103, and Lac. plantarum LS5) showed the highest preferences in taste, flavor, and overall acceptability. Therefore, cabbage juice fermented by mixed starter (Leu. mesenteroides, Lac. sakei SL1103 and Lac. plantarum LS5) has the highest potential for the development of fermented cabbage juice as an excellent bioactive functional food.

Origin of lactic acid bacteria in mulkimchi fermentation

  • Hwang, Chung Eun;Haque, Md. Azizul;Hong, Su Young;Kim, Su Cheol;Cho, Kye Man
    • Journal of Applied Biological Chemistry
    • /
    • v.62 no.4
    • /
    • pp.441-446
    • /
    • 2019
  • The assortment of endophytic lactic acid bacteria (LAB) in kimchi derives from its raw vegetables, which include Chinese cabbage, radish, welsh onion, onion, garlic, red pepper, and ginger. These vegetables were examined during mulkimchi fermentation using gene-specific multiplex polymerase chain reaction and 16S ribosomal RNA sequence analysis. Sixteen species from five LAB genera (Leuconostoc, Lactobacillus, Lactococcus, Pediococcus, and Weissella) appeared in the raw kimchi materials. Interestingly, nine LAB species were identified in mulkimchi on fermentation day 0 as follows: Leuconostoc carnosum, Leuconostoc citreum, Leuconostoc gelidum, Leuconostoc inhae, Leuconostoc mesenteroides, Lactobacillus plantarum, Lactobacillus sakei, Lactococcus lactis, and Weissella confusa. Seven additional LAB species were present in mulkimchi at fermentation day 9 as follows: Leuconostoc gasicomitatum, Leuconostoc kimchii, Lactobacillus brevis, Lactobacillus curvatus, Lactobacillus pentosus, Pediococcus pentosaceus, and Weissella koreensis. These species corresponded completely with the LAB in kimchi vegetables. Wei. confusa was the predominant LAB during early fermentation (pH 6.20 to 4.98 and acidity 0.20 to 0.64%), while Lac. sakei, Lac. plantarum, and Wei. koreensis became dominant later in fermentation (pH 4.98 to 3.88 and acidity 0.64 to 1.26%). These results collectively demonstrate that the LAB involved in mulkimchi fermentation originates from the raw vegetables examined.

Fermentation of Red Ginseng using CKDHC 0801 and CKDHC 0802 (CKDHC 0801과 CKDHC 0802 균주를 이용한 홍삼발효)

  • Shin, Yong-Seo
    • Korean journal of food and cookery science
    • /
    • v.26 no.4
    • /
    • pp.469-474
    • /
    • 2010
  • In this study, we isolated two species of bacteria for the powerful biotrasnformation of ginsenosides from Kimchi and human feces. Using biochemical tests and 16s rRNA sequencing, the selected strains were identified as Latobacillusplantarum (CKDHC0801) and Lactobacillussakei (CKDHC0802). Changes in cell growth and pH were examined in red ginseng. CKDHC 0801 and CKDHC 0802 reached their maximum growth phase after 24 hr and 48 hr, respectively, whereas the combined culture of CKDHC 0801 and CKDHC 0802 showed higher cell growth than bacterial strain alone. During fermentation of CKDHC 0801 and the combined culture, the pH values decreased from 5.2 to 4.2 after 24 hr, but CKDHC 0802 reached pH of 4.2 after 3day. The identities of ginsenosides were biotransferred from high molecular (Rg1 and Rb2) to low molecular (Rg3, Rg5, Rk1, PPD) by fermentation of both bacteria. Therefore, the results of this study demonstrate that CKDHC 0801 and CKDHC 0802 could be used to enhance to effects of red ginseng.

Antimicrobial and ACE Inhibitory Activities of Citrus unshiu Fermented with Lactic Acid Bacteria (감귤 유산균 발효물의 항균 활성과 ACE 저해능)

  • Choi, So-Yeon;Kim, Si-Kyung;Youn, Un-Young;Kang, Dae-Ook;Choi, Nack-Shick;Mun, Mi-Sun;Lee, Seung-Cheol
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.44 no.7
    • /
    • pp.1084-1089
    • /
    • 2015
  • To develop high quality citrus products, seven lactic acid bacteria were innoculated onto ground citrus (Citrus unshiu) and cultured for 10 days. On culture days 0, 3, 5, 7, and 10, citrus ferments were withdrawn, and their antimicrobial and angiotensin-I converting enzyme (ACE) inhibitory activities were evaluated. Citrus ferments innoculated with CL-1 and CL-2, which were isolated from kimchi, showed relatively higher antimicrobial activities against food poisoning bacteria. Citrus ferments innoculated with CL-1 and CL-2 also showed stronger ACE inhibitory activities than other ferments. CL-1 and CL-2 showed more than 99% homogeny with Pediococcus acidilactici and Lactobacillus sakei, respectively, by 16S rRNA gene analysis. These results indicate that fermentation with P. acidilactici and L. sakei might contribute to the increased antimicrobial and anti-hypertensive activities of citrus.

Changes in physicochemical property and lactic acid bacterial community during kimchi fermentation at different temperatures

  • Lee, Hee Yul;Haque, Md. Azizul;Cho, Kye Man
    • Journal of Applied Biological Chemistry
    • /
    • v.63 no.4
    • /
    • pp.429-437
    • /
    • 2020
  • This study aimed to investigate the change in physicochemical properties and lactic acid bacterial communities during kimchi fermentation at different temperatures (8, 15, and 25 ℃) using two molecular genetics approaches, multiplex polymerase chain reaction and 16S rRNA gene sequencing. The pH during fermentation at 8, 15, and 25 ℃ decreased from 6.17 on the initial fermentation day to 3.92, 3.79, and 3.48 after 54, 30, and 24 days of fermentation, respectively, while the acidity increased from 0.24% to 1.12, 1.35, and 1.54%, respectively. In particular, the levels of lactic acid increased from 3.74 g/L on the initial day (day 0) to 14.43, 20.60, and 27.69 g/L during the fermentation after 24, 18, and 12 days at 8, 15, and 25 ℃, respectively, after that the lactic acid concentrations decreased slowly. The predominance of lactic acid bacteria (LAB) in the fermented kimchi was dependent on fermentation stage and temperature: Lactobacillus sakei appeared during the initial stage and Leuconsotoc mesenteroides was observed during the optimum-ripening stage at 8, 15, and 25 ℃. Lac. sakei and Lactobacillus plantarum grew rapidly in kimchi produced at 8, 15, and 25 ℃. In addition, Weissella koreensis first appeared at days 12, 9, and 6 at 8, 15, and 25 ℃ of fermentation, respectively. This result suggests that LAB population dynamics are rather sensitive to environmental conditions, such as pH, acidity, salinity, temperature, and chemical factors including free sugar and organic acids.