• Title/Summary/Keyword: Laboratory scanner

Search Result 114, Processing Time 0.02 seconds

A Study of Three-dimensional evaluation of the accuracy of resin provisional restorations fabricated with the DLP printer (DLP 프린터로 제작된 레진 임시수복물의 3차원적 정확도 평가)

  • Kang, Wol;Lee, Hee-Kyung
    • Journal of Technologic Dentistry
    • /
    • v.42 no.1
    • /
    • pp.35-41
    • /
    • 2020
  • Purpose: The purpose of this study was to evaluate the accuracy of the DLP 3D printer by conducting 3-dimensional assesment of resin provisional restorations. Methods: The first premolar of the maxillary was prepared for the abutment. The abutment was scanned by using a scanner. The provisional restoration was designed by using CAD software. A total of 16 resin provisional restorations were produced using ZD200 and Veltz DLP 3D printer. Scanning was done of resin provisional restorations and 3-dimensional measurement was conducted for accuracy. The mean (SD) of RMS was reported for each group. Independent t-test was used to assess the statistical significance of the results. All analyses were done using SPSS 22.0. Results: The mean ± SD of RMS value for the accuracy of the resin provisional restorations that was fabricated by using ZD200 and Veltz DLP 3D printer were 50.85.±4.64㎛ and 70.33±6.31㎛. Independent t-test showed significant differences between groups(p<0.001). Conclusion: The resin provisional restorations made with DLP 3D printers showed clinically acceptable accuracy.

Evaluation of marginal and internal gap of three-unit metal framework according to subtractive manufacturing and additive manufacturing of CAD/CAM systems

  • Kim, Dong-Yeon;Kim, Eo-Bin;Kim, Hae-Young;Kim, Ji-Hwan;Kim, Woong-Chul
    • The Journal of Advanced Prosthodontics
    • /
    • v.9 no.6
    • /
    • pp.463-469
    • /
    • 2017
  • PURPOSE. To evaluate the fit of a three-unit metal framework of fixed dental prostheses made by subtractive and additive manufacturing. MATERIALS AND METHODS. One master model of metal was fabricated. Twenty silicone impressions were made on the master die, working die of 10 poured with Type 4 stone, and working die of 10 made of scannable stone. Ten three-unit wax frameworks were fabricated by wax-up from Type IV working die. Stereolithography files of 10 three-unit frameworks were obtained using a model scanner and three-dimensional design software on a scannable working die. The three-unit wax framework was fabricated using subtractive manufacturing (SM) by applying the prepared stereolithography file, and the resin framework was fabricated by additive manufacturing (AM); both used metal alloy castings for metal frameworks. Marginal and internal gap were measured using silicone replica technique and digital microscope. Measurement data were analyzed by Kruskal-Wallis H test and Mann-Whitney U-test (${\alpha}=.05$). RESULTS. The lowest and highest gaps between premolar and molar margins were in the SM group and the AM group, respectively. There was a statistically significant difference in the marginal gap among the 3 groups (P<.001). In the marginal area where pontic was present, the largest gap was $149.39{\pm}42.30{\mu}m$ in the AM group, and the lowest gap was $24.40{\pm}11.92{\mu}m$ in the SM group. CONCLUSION. Three-unit metal frameworks made by subtractive manufacturing are clinically applicable. However, additive manufacturing requires more research to be applied clinically.

Ceramic molar crown reproducibility by digital workflow manufacturing: An in vitro study

  • Jeong, II-Do;Kim, Woong-Chul;Park, Jinyoung;Kim, Chong-Myeong;Kim, Ji-Hwan
    • The Journal of Advanced Prosthodontics
    • /
    • v.9 no.4
    • /
    • pp.252-256
    • /
    • 2017
  • PURPOSE. This in vitro study aimed to analyze and compare the reproducibility of zirconia and lithium disilicate crowns manufactured by digital workflow. MATERIALS AND METHODS. A typodont model with a prepped upper first molar was set in a phantom head, and a digital impression was obtained with a video intraoral scanner (CEREC Omnicam; Sirona GmbH), from which a single crown was designed and manufactured with CAD/CAM into a zirconia crown and lithium disilicate crown (n=12). Reproducibility of each crown was quantitatively retrieved by superimposing the digitized data of the crown in 3D inspection software, and differences were graphically mapped in color. Areas with large differences were analyzed with digital microscopy. Mean quadratic deviations (RMS) quantitatively obtained from each ceramic group were statistically analyzed with Student's t-test (${\alpha}=.05$). RESULTS. The RMS value of lithium disilicate crown was $29.2\;(4.1){\mu}m$ and $17.6\;(5.5){\mu}m$ on the outer and inner surfaces, respectively, whereas these values were $18.6\;(2.0){\mu}m$ and $20.6\;(5.1){\mu}m$ for the zirconia crown. Reproducibility of zirconia and lithium disilicate crowns had a statistically significant difference only on the outer surface (P<.001). The outer surface of lithium disilicate crown showed over-contouring on the buccal surface and under-contouring on the inner occlusal surface. The outer surface of zirconia crown showed both over- and under-contouring on the buccal surface, and the inner surface showed under-contouring in the marginal areas. CONCLUSION. Restoration manufacturing by digital workflow will enhance the reproducibility of zirconia single crowns more than that of lithium disilicate single crowns.

Accuracy of provisional crowns made using stereolithography apparatus and subtractive technique

  • Kang, Seen-Young;Park, Jung-Hyun;Kim, Ji-Hwan;Kim, Woong-Chul
    • The Journal of Advanced Prosthodontics
    • /
    • v.10 no.5
    • /
    • pp.354-360
    • /
    • 2018
  • PURPOSE. To compare and analyze trueness and precision of provisional crowns made using stereolithography apparatus and subtractive technology. MATERIALS AND METHODS. Digital impressions were made using a master model and an intraoral scanner and the crowns were designed with CAD software; in total, 22 crowns were produced. After superimposing CAD design data and scan data using a 3D program, quantitative and qualitative data were obtained for analysis of trueness and precision. Statistical analysis was performed using normality test combined with Levene test for equal variance analysis and independent sample t-test. Type 1 error was set at 0.05. RESULTS. Trueness for the outer and inner surfaces of the SLA crown (SLAC) were $49.6{\pm}9.3{\mu}m$ and $22.5{\pm}5.1{\mu}m$, respectively, and those of the subtractive crown (SUBC) were $31.8{\pm}7.5{\mu}m$ and $14.6{\pm}1.2{\mu}m$, respectively. Precision values for the outer and inner surfaces of the SLAC were $18.7{\pm}6.2{\mu}m$ and $26.9{\pm}8.5{\mu}m$, and those of the SUBC were $25.4{\pm}3.1{\mu}m$ and $13.8{\pm}0.6{\mu}m$, respectively. Trueness values for the outer and inner surfaces of the SLAC and SUBC showed statistically significant differences (P<.001). Precision for the inner surface showed significance (P<.03), whereas that for the outer surface showed no significance (P<.58). CONCLUSION. The study demonstrates that provisional crowns produced by subtractive technology are superior to crowns fabricated by stereolithography in terms of accuracy.

Comparative evaluation of repeatability of scanning abutment tooth stone model and impression : Applied assessment of CAD/CAM ISO standard in dentistry (치과 캐드캠 ISO평가 기준에 준한 지대치 경석고 모형 및 인상체 스캐닝의 반복측정안정성 비교 평가)

  • Jeon, Jin-Hun;Hwang, Seong-Sig;Kim, Chong-Myeong;Kim, Dong-Yeon;Kim, Ji-Hwan;Kim, Woong-Chul
    • Journal of Technologic Dentistry
    • /
    • v.39 no.1
    • /
    • pp.1-7
    • /
    • 2017
  • Purpose: The purpose of this in vitro study compared to evaluation of repeatability of scanning abutment tooth stone model and impression applied CAD/CAM ISO standard in dentistry. Methods: To evaluate repeatability of scanning abutment tooth stone model, were repeatedly scanned to obtain 11 data via 3D stereolithography (STL) files. 10 data (STL files) were compared with the first 3D data (STL file), and the error sizes were measured by using 3D superimposing software(n=10). Also, the repeatability of scanning abutment tooth impression was evaluated with the same procedure. Independent t test was performed to evaluate the repeatability of scanning abutment tooth stone model versus impression through root mean square(RMS) and standard deviation(SD)(${\alpha}=0.05$). Results: $RMS{\pm}SD$ with regard to repeatability were $14.7{\pm}2.5{\mu}m$, $17.1{\pm}4.0{\mu}m$, respectively, with scanning abutment tooth stone model and impression(p=0.129). Conclusion: This study results showed a little different repeatability of scanning abutment tooth stone model and impression applied CAD/CAM ISO standard in dentistry, will suggest futures good studies and clinical advantages.

Evaluating the accuracy (trueness and precision) of interim crowns manufactured using digital light processing according to post-curing time: An in vitro study

  • Lee, Beom-Il;You, Seung-Gyu;You, Seung-Min;Kim, Dong-Yeon;Kim, Ji-Hwan
    • The Journal of Advanced Prosthodontics
    • /
    • v.13 no.2
    • /
    • pp.89-99
    • /
    • 2021
  • PURPOSE. This study aimed to compare the accuracy (trueness and precision) of interim crowns fabricated using DLP (digital light processing) according to post-curing time. MATERIALS AND METHODS. A virtual stone study die of the upper right first molar was created using a dental laboratory scanner. After designing interim crowns on the virtual study die and saving them as Standard Triangulated Language files, 30 interim crowns were fabricated using a DLP-type 3D printer. Additively manufactured interim crowns were post-cured using three different time conditions-10-minute post-curing interim crown (10-MPCI), 20-minute post-curing interim crown (20-MPCI), and 30-minute post-curing interim crown (30-MPCI) (n = 10 per group). The scan data of the external and intaglio surfaces were overlapped with reference crown data, and trueness was measured using the best-fit alignment method. In the external and intaglio surface groups (n = 45 per group), precision was measured using a combination formula exclusive to scan data (10C2). Significant differences in accuracy (trueness and precision) data were analyzed using the Kruskal-Wallis H test, and post hoc analysis was performed using the Mann-Whitney U test with Bonferroni correction (α=.05). RESULTS. In the 10-MPCI, 20-MPCI, and 30-MPCI groups, there was a statistically significant difference in the accuracy of the external and intaglio surfaces (P<.05). On the external and intaglio surfaces, the root mean square (RMS) values of trueness and precision were the lowest in the 10-MPCI group. CONCLUSION. Interim crowns with 10-minute post-curing showed high accuracy.

Evaluation of repeated measurement stability of dentition type of maxillary anterior tooth: an in vitro study (상악 전치의 치열 형태에 따른 스캔 반복 측정 안정성 평가: in vitro 연구)

  • Park, Dong-In;Son, Ho-Jung;Kim, Woong-Chul;Kim, Ji-Hwan
    • Journal of Technologic Dentistry
    • /
    • v.41 no.3
    • /
    • pp.211-217
    • /
    • 2019
  • Purpose: The purpose of this study is to evaluate the repeated measurement stability of scans related to dentition type. Methods: A normal model and the crowding and diastema models are also duplicated using duplicating silicon. After that, a plaster model is made using a plaster-type plaster on the duplicate mold, and each model is scanned 5 times by using an extraoral scanner. The gingival part and molar part were deleted from the 3D STL file data obtained through scanning. Using the 3D stl file obtained in this way, data is nested between model groups. Thereafter, RMS values obtained were compared and evaluated. The normality test of the data was performed for the statistical application of repeated measurements with dentition type, and the normality was satisfied. Therefore, the one-way ANOVA test, which is a parametric statistical method, was applied, and post-tests were processed by the Scheffe method. Results: The average size of each RMS in the Normal, Diastema, and Crowding groups was Normal> Crowding> Diastema. However, the standard deviation was in the order of Crowding> Normal> Diastema. The average value of each data is as follows. Diastema model was the smallest ($5.51{\pm}0.55{\mu}m$), followed by the crowding model ($12.30{\pm}2.50{\mu}m$). The normal model showed the maximum error ($13.23{\pm}1.06{\mu}m$). Conclusion: There was a statistically significant difference in the repeatability of the scanning measurements according to the dentition type. Therefore, you should be more careful when scanning the normal intense or crowded dentition than scanning the interdental lining. However, this error value was within the range of applicable errors for all clinical cases.

Comparison of three-dimensional adaptation as per the rinsing time of temporary crown manufactured using a digital light processing printer (디지털 광 조명 방식으로 제작한 임시 크라운의 세척 시간에 따른 3차원 적합도 평가)

  • Lee, Beom-Il;You, Seung-Gyu;You, Seung-Min;Kim, Ji-Hwan
    • Journal of Technologic Dentistry
    • /
    • v.42 no.4
    • /
    • pp.334-340
    • /
    • 2020
  • Purpose: This study aimed to compare three-dimensional adaptation with the rinsing time of the temporary crown produced using the digital light processing method. Methods: The maxillary right first molar abutment was scanned with a dental scanner. A temporary crown was designed with the scanned abutment. The designed crown was made of 10 temporary crowns using a digital light processing printer. The crowns were divided into the 5-minute and 10-minute rinsing groups; 5 temporary crown washes were performed for each group. In order to obtain the internal data, each group was scanned for a temporary crown. The three-dimensional fit was measured by superimposing the scanned internal surface data and the abutment data. The average comparison of three-dimensional adaptation was analyzed using the Mann-Whitney U test. Results: The 5-minute rinsing group showed a significantly higher adaptation of 71.42±3.08 ㎛ as compared to the 10-minute rinsing group (67.52±0.92 ㎛) (p<0.05). Conclusion: When making a temporary crown with a digital light processing method, a rinsing time of 10 minutes is appropriate.

In-vitro evaluation of marginal and internal fit of 3-unit monolithic zirconia restorations fabricated using digital scanning technologies

  • Ozal, Cise;Ulusoy, Mutahhar
    • The Journal of Advanced Prosthodontics
    • /
    • v.13 no.6
    • /
    • pp.373-384
    • /
    • 2021
  • PURPOSE. This study aimed to compare the marginal and internal fit of 3-unit monolithic zirconia restorations that were designed by using the data obtained with the aid of intraoral and laboratory scanners. MATERIALS AND METHODS. For the fabrication of 3-unit monolithic zirconia restorations using impressions taken from the maxillary master cast, plaster cast was created and scanned in laboratory scanners (InEos X5 and D900L). The main cast was also scanned with different intraoral scanners (Omnicam [OMNI], Primescan [PS], Trios 3 [T3], Trios 4 [T4]) (n = 12 per group). Zirconia fixed partial dentures were virtually designed, produced from presintered block, and subsequently sintered. Marginal and internal discrepancy values (in ㎛) were measured by using silicone replica method under stereomicroscope. Data were statistically analyzed by using 1-way ANOVA and Kruskal Wallis tests (P<.05). RESULTS. In terms of marginal adaptation, the measurements on the canine tooth indicated better performance with intraoral scanners than those in laboratory scanners, but there was no difference among intraoral scanners (P<.05). In the premolar tooth, PS had the lowest marginal (86.9 ± 19.2 ㎛) and axial (92.4 ± 14.8 ㎛), and T4 had the lowest axio-occlusal (89.4 ± 15.6 ㎛) and occlusal (89.1 ± 13.9 ㎛) discrepancy value. In both canine and premolar teeth, the D900L was found to be the most marginally and internally inconsistent scanner. CONCLUSION. Within the limits of the study, marginal and internal discrepancy values were generally lower in intraoral scanners than in laboratory scanners. Marginal discrepancy values of scanners were clinically acceptable (< 120 ㎛), except D900L.

Evaluation of marginal and internal fit of metal copings fabricated by selective laser melting (SLM 방식으로 제작한 도재관 금속하부구조물의 변연 및 내면 적합도 평가)

  • Sung-Ryung Bae;Ha-Bin Lee;Mi-Jun Noh;Ji-Hwan Kim
    • Journal of Technologic Dentistry
    • /
    • v.45 no.1
    • /
    • pp.1-7
    • /
    • 2023
  • Purpose: To evaluate the marginal and internal fit of metal coping fabricated by a metal three-dimensional (3D) printer that uses selective laser melting (SLM). Methods: An extraoral scanner was used to scan a die of the prepared maxillary right first molar, and the coping was designed using computer-aided design software and saved as an stereo lithography (STL) file. Ten specimens were printed with an SLM-type metal 3D printer (SLM group), and 10 more specimens were fabricated by casting the castable patterns output generated by a digital light processing-type resin 3D printer (casting the 3D printed resin patterns [CRP] group). The fit was measured using the silicon replica technique, and 8 points (A to H) were set per specimen to measure the marginal (points A, H) and internal (points B~G) gaps. The differences among the groups were compared using the Mann-Whitney U-test (α=0.05). Results: The mean of marginal fit in the SLM group was 69.67±18.04 ㎛, while in the CRP group was 117.10±41.95 ㎛. The internal fit of the SLM group was 95.18±41.20 ㎛, and that of the CRP group was 86.35±32 ㎛. As a result of statistical analysis, there was a significant difference in marginal fit between the SLM and CRP groups (p<0.05); however, there was no significant difference in internal fit between the SLM group and the CRP group (p>0.05). Conclusion: The marginal and internal fit of SLM is within the clinically acceptable range, and it seems to be applicable in terms of fit.