• Title/Summary/Keyword: Laboratory load test

Search Result 578, Processing Time 0.029 seconds

Influence of Initial Clamping Force of Tension Clamp on Performance of Elastic Rail Fastening System (텐션클램프의 초기 체결력이 탄성레일체결장치의 성능에 미치는 영향)

  • Lee, Dong Wook;Choi, Jung Youl;Baik, Chan Ho;Park, Yong Gul
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.33 no.3
    • /
    • pp.1243-1251
    • /
    • 2013
  • The purpose of this study is to investigate the influence of initial clamping force of tension clamp on the performance of an elastic rail fastening system used in sharp curve track. In this study, the initial clamping force and the increasing lateral wheel loads were conducted in the analytical and experimental study, i.e., finite element analysis, laboratory and field test. Using the analytical and experimental results, the performance of the tension clamp was investigated. It was found that the stress of tension clamp depends on the initial clamping force. Therefore the initial clamping force appeared to directly affect the compression stress of the tension clamp. It was found that the compression stress of tension clamp was transferred to the tensile stress by applied the lateral wheel load in service sharp curve track. Further, it was concluded that the initial clamping force was applied on the strengthening force for the tension clamp and then the appropriate initial clamping force was important to ensure a stable performance and long term endurance of tension clamp.

Improvement of Channel Water Quality Module in SWAT (SWAT 모형의 하도 수질 모듈의 개선)

  • Kim, Nam-Won;Shin, Ah-Hyun
    • Journal of Korean Society on Water Environment
    • /
    • v.25 no.6
    • /
    • pp.902-909
    • /
    • 2009
  • With various reservoirs, dams and reduction of water velocity in downstream, rivers in Korea often have characteristics of accumulation of pollutants. Therefore, the main focus of water quality modeling in Korea needs to be shifted from DO to algae and organic matter. Moreover the structures of water quality models should be modified to have capability of simulating BOD which is a key factor of total water pollution load management in Korea as laboratory experiment BOD (Bottle $BOD_5$). In the SWAT model which is one of the widely used water quality models in Korea, the channel water quality module is using main algorithm of the QUAL2E model which has limitations in simulating algae, organic matter and Bottle BOD5 etc. To overcome this hindrance, in this study, the improved channel water quality module of the SWAT model (Q-SWAT) was proposed by linking the algorithms of the QUAL-NIER model which was developed based on the QUAL2E model to the SWAT model. The algorithms estimating the increase of internal organic matter by fractionization algal metabolism process and calculating Bottle $BOD_5$ were added and the results of proposed model were compared to those of the original SWAT model. The results of comparison test are showing that more accurate BOD values can be obtained with the Q-SWAT model and it is anticipated that the Q-SWAT model can be used as an effective tool of decision support through the water quality simulation and long term pollution source analysis.

Multi-dimensional wind vibration coefficients under suction for ultra-large cooling towers considering ventilation rates of louvers

  • Ke, S.T.;Du, L.Y.;Ge, Y.J.;Tamura, Y.
    • Structural Engineering and Mechanics
    • /
    • v.66 no.2
    • /
    • pp.273-283
    • /
    • 2018
  • Currently, the dynamic amplification effect of suction is described using the wind vibration coefficient (WVC) of external loads. In other words, it is proposed that the fluctuating characteristics of suction are equivalent to external loads. This is, however, not generally valid. Meanwhile, the effects of the ventilation rate of louver on suction and its WV are considered. To systematically analyze the effects of the ventilation rate of louver on the multi-dimensional WVC of ultra-large cooling towers under suctions, the 210 m ultra-large cooling tower under construction was studied. First, simultaneous rigid pressure measurement wind tunnel tests were executed to obtain the time history of fluctuating wind loads on the external surface and the internal surface of the cooling tower at different ventilation rates (0%, 15%, 30%, and 100%). Based on that, the average values and distributions of fluctuating wind pressures on external and internal surfaces were obtained and compared with each other; a tower/pillar/circular foundation integrated simulation model was developed using the finite element method and complete transient time domain dynamics of external loads and four different suctions of this cooling tower were calculated. Moreover, 1D, 2D, and 3D distributions of WVCs under external loads and suctions at different ventilation rates were obtained and compared with each other. The WVCs of the cooling tower corresponding to four typical response targets (i.e., radial displacement, meridional force, Von Mises stress, and circumferential bending moment) were discussed. Value determination and 2D evaluation of the WVCs of external loads and suctions of this large cooling tower at different ventilation rates were proposed. This study provides references to precise prediction and value determination of WVC of ultra-large cooling towers.

Evaluation of the Sequential Behavior of Tieback Wall in Sand by Small Scale Model Tests

  • Seo, Dong-Hee;Chang, Buhm-Soo;Jeong, Sang-Seom;Kim, Soo-Il
    • Journal of the Korean Geotechnical Society
    • /
    • v.15 no.3
    • /
    • pp.113-129
    • /
    • 1999
  • In this study, a total of 12 types of sequential model tests were conducted at the laboratory for small scale anchored walls. The sequential behavior for flexible wall embedded in sand was investigated by varying degrees of relative density of Joomoonjin sand and flexibility number of model wall. The model tests were carried out in a 1000mm width, 1500mm length, and 1000mm high steel box. Load cells, pressure cells, displacement transducer and dial gauges were used to measure the anchor forces, lateral wall deflections, lateral earth pressures and vertical displacements of ground surface, respectively. Limited model tests were performed to examine the parameters for soil-wall interaction model and the formulation of analytical method was revised in order to predict the behavior of anchored wall in sand. Based on the model tests and proposed analytical method, model simulations were performed and the predictions by the present approach were compared with measurements by the model tests and predictions by other commercial programs. It is shown that the prediction by the present approach simulates qualitatively well the general trend observed for model test.

  • PDF

Power System Development of Unmanned Aerial Vehicle using Proton Exchange Membrane Fuel Cell (고분자 전해질 연료전지를 이용한 무인비행체 동력시스템 설계)

  • Jee, Yeong-Kwang;Sohn, Young-Jun;Park, Gu-Gon;Kim, Chang-Soo;Choi, Yu-Song;Cho, Sung-Baek
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.23 no.3
    • /
    • pp.250-255
    • /
    • 2012
  • In this paper, the development and performance analysis of a fuel cell-powered unmanned aerial vehicle is described. A fuel cell system featuring 1 kW proton exchange membrane fuel cell combined with a highly pressurized fuel supply system is proposed. For the higher fuel consumption efficiency and simplification of overall system, dead-end type operation is chosen and each individual system such as purge system, fuel supply system, cooling system is developed. Considering that fluctuation of exterior load makes it hard to stabilize fuel cell performance, the power management system is designed using a fuel cell and lithium-ion battery hybrid system. After integration of individual system, the performance of unmanned aerial vehicle is analyzed using data from flight and laboratory test. In the result, overall system was properly operated but for more duration of flight, research on weight lighting and improvement of fuel efficiency is needed to be progressed.

Development of a hydraulic power transmission system for the 3-point hitch of 50-kW narrow tractors

  • Chung, Sun-Ok;Kim, Yong-Joo;Choi, Moon-Chan;Lee, Kyu-Ho;Ha, Jong-Kyou;Kang, Tae-Kyoung;Kim, Young-Keun
    • Korean Journal of Agricultural Science
    • /
    • v.43 no.3
    • /
    • pp.450-458
    • /
    • 2016
  • High performance small and mid-sized tractors are required for dryland and orchard operations. A power transmission system is the most important issue for the design of high performance tractors. Many operations, such as loading and lifting, use hydraulic power. In the present study, a hydraulic power transmission system for the 3-point hitch of a 50 kW narrow tractor was developed and its performance was evaluated. First, major components were designed based on target design parameters. Target operations were spraying, weeding, and transportation. Main design parameters were determined through mathematical calculation and computer simulation. The capacity of the hydraulic cylinder was calculated taking the lifting force required for the weight of the implements into consideration. Then, a prototype was fabricated. Major components were the lifting valve, hydraulic cylinder, and 3-point hitch. Finally, performance was evaluated through laboratory tests. Tests were conducted using load weights, lift arm sensor, and lift arm height from the ground. Test results showed that the lifting force was in the range of 23.5 - 29.4 kN. This force was greater than lifting forces of competing foreign tractors by 3.9 - 4.9 kN. These results satisfied the design target value of 20.6 kN, determined by survey of advanced foreign products. The prototype will be commercialized after revision based on various field tests. Improvement of reliability should be also achieved.

Optimal Design of Lightweight Frame for Heavy Flat-Bed Trailer by Using Taguchi Method (다구찌기법을 이용한 대형 평판트레일러 하부프레임 경량설계)

  • Kim, Jin-Gon;Yoon, Min-Su
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.34 no.3
    • /
    • pp.353-359
    • /
    • 2010
  • For achieving economical fuel consumption, an increase in the load bearing capacity, and for environmental conservation, there is a constant demand for lightweight frames of commercial vehicles used in the transportation industry. In this study, a structural analysis of the frame of a heavy flat-bed trailer was performed to determine the optimal design of a new lightweight frame made of high-strength steel. To identify the key design parameters of the trailer frame, Taguchi's orthogonal array was used in the experiments. Using ANSYS, a commercial FEA program, the frame structure was optimized with respect to stress, deflection, and torsional stiffness by performing stress and vibration analyses. A physical model of the trailer was also built to verify the validity of the numerical analyses. Finally, an on-road fatigue test of the new lightweight frame made of the high-strength steel, ATOS80, was performed to confirm the durability of the new design.

Evaluation of Design Fire Curves for Single Combustibles in a Cinema Complex (복합영상관 단일 가연물의 디자인 화재곡선 평가)

  • Jang, Hyo-Yeon;Hwang, Cheol-Hong;Oh, Chang Bo;Nam, Dong-Gun
    • Fire Science and Engineering
    • /
    • v.34 no.3
    • /
    • pp.18-27
    • /
    • 2020
  • An actual fire test was performed on single combustibles placed in a local cinema complex, and quantitative differences in the maximum heat release rate (HRR) and fire growth rate were investigated based on the design fire curve methods (i.e., the general and 2-stage methods). In terms of combustible use and fire load, a total of 12 combustibles were selected, classified into cinema lounge and movie theater. It was found that the maximum HRR and fire growth rate determined using the two-stage method were quantitatively different from those of the general method. The application of the two-stage method, which can be used to determine the fire growth rate of the initial fire stage more precisely, could be useful in accurately predicting the activation time of fire detectors and fire-extinguishing facilities, as well as the available safe egress time (ASET) and required safe egress time (RSET).

A Study on the Optimum Mix Proportion of the Mass Concrete Designed as Massive and Deep Structure

  • Kwon Yeong-Ho;Lee Hwa-Jin
    • Journal of the Korea Concrete Institute
    • /
    • v.17 no.2 s.86
    • /
    • pp.293-302
    • /
    • 2005
  • This study describes data from determination of the optimum mix proportion and site application of the mass concrete placed in bottom slab and side wall having a large depth and section as main structures of LNG in-ground tank. This concrete requires low heat hydration, excellent balance between workability and consistency because concreting work of LNG in-ground tank is usually classified by under-pumping, adaptation of longer vertical and horizontal pumping line than ordinary pumping condition. For this purpose, low heat Portland cement and lime stone powder as cementitious materials are selected and design factors including unit cement and water content, water-binder ratio, fine aggregate ratio and adiabatic temperature rising are tested in the laboratory and batch plant. As experimental results, the optimum unit cement and water content are selected under $270kg/m^3$ and $l55{\~}l60 kg/m^3$ separately to control adiabatic temperature rising below $30^{\circ}C$ and to improve properties of the fresh and hardened concrete. Also, considering test results of the confined water ratio($\beta$p) and deformable coefficient(Ep), $30\%$ of lime stone powder by cement weight is selected as the optimum replacement ratio. After mix proportions of 5cases are tested and compared the adiabatic temperature rising($Q^{\infty}$, r), tensile and compressive strength, modulus of elasticity, teases satisfied with the required performances are chosen as the optimum mix design proportions of the side wall and bottom slab concrete. $Q^{\infty}$ and r are proved smaller than those of another project. Before application in the site, properties of the fresh concrete and actual mixing time by its ampere load are checked in the batch plant. Based on the results of this study, the optimum mix proportions of the massive concrete are applied successfully to the bottom slab and side wall in LNG in-ground tank.

Mechanisms of the Autonomic Nervous System to Stress Produced by Mental Task in a Noisy Environment (소음상황에서 인지적 과제에 의해 유발된 스트레스에 대한 자율신경반응의 기제)

  • Sohn, Jin-Hun;Estate M. Sokhadze;Lee, Kyung-Hwa;Kim, Yeon-Kyu;Park, Sangsup
    • Proceedings of the Korean Society for Emotion and Sensibility Conference
    • /
    • 1999.11a
    • /
    • pp.216-221
    • /
    • 1999
  • A mental task combined with noise background is an effective model of laboratory stress for study of psychophysiology of the autonomic nervous system (ANS). The intensity of the background noise significantly affects both a subjective evaluation of experienced stress level during test and the physiological responses associated with mental load in noisy environments. Providing tests of similar difficulties we manipulated the background noise intensity as a main factor influencing a psychophysiological outcome and the analyzed reactivity along withe the noise intensity dimension. The goal of this study was to identify the patterns of ANS responses and the relevant subjective stress scores during performance of word recognition tasks on the background of white noise (WN) of the different intensities (55, 70 and 85 dB). Subjects were 27 college students (19-24 years old). BIOPAC, Grass Neurodata System and AcqKnowlwdge 3.5 software were used to record ECG, PPG, SCL, skin temperature, and respiration. Experimental manipulations were effective in producing subjective and physiological responses usually associated with stress. The results suggested that the following potential autonomic mechanisms might be involved in the mediation of the observed physiological responses: A sympathetic activation with parasympathetic withdrawal during mild 55 and 70dB noise (featured by similar profiles) and simultaneous activation of sympathetic and parasympathetic systems during intense 85dB WN. The parasympathetic activation in this case might be a compensatory effect directed to prevent sympathetic domination and to maintain optimal arousal state for the successful performance on mental stress task. It should be mentioned that obtained results partially support Gellhorn's (1960; 1970) "tuning phenomenon" as a possible mechanism underlying stress response.

  • PDF