• Title/Summary/Keyword: Laboratory condition

Search Result 2,468, Processing Time 0.029 seconds

Program development and preliminary CHF characteristics analysis for natural circulation loop under moving condition

  • Gui, Minyang;Tian, Wenxi;Wu, Di;Chen, Ronghua;Su, G.H.;Qiu, Suizheng
    • Nuclear Engineering and Technology
    • /
    • v.53 no.2
    • /
    • pp.446-454
    • /
    • 2021
  • Critical heat flux (CHF) has traditionally been evaluated using look-up tables or empirical correlations for nuclear power plants. However, under complex moving condition, it is necessary to reconsider the CHF characteristics since the conventional CHF prediction methods would no longer be applicable. In this paper, the additional forces caused by motions have been added to the annular film dryout (AFD) mechanistic model to investigate the effect of moving condition on CHF. Moreover, a theoretical model of the natural circulation loop with additional forces is established to reflect the natural circulation characteristics of the loop system. By coupling the system loop with the AFD mechanistic model, a CHF prediction program called NACOM for natural circulation loop under moving condition is developed. The effects of three operating conditions, namely stationary, inclination and rolling, on the CHF of the loop are then analyzed. It can be clearly seen that the moving condition has an adverse effect on the CHF in the natural circulation system. For the calculation parameters in this paper, the CHF can be reduced by 25% compared with the static value, which indicates that it is important to consider the effects of moving condition to retain adequate safety margin in subsequent thermal-hydraulic designs.

Diode and MOSFET Properties of Trench-Gate-Type Super-Barrier Rectifier with P-Body Implantation Condition for Power System Application

  • Won, Jong Il;Park, Kun Sik;Cho, Doo Hyung;Koo, Jin Gun;Kim, Sang Gi;Lee, Jin Ho
    • ETRI Journal
    • /
    • v.38 no.2
    • /
    • pp.244-251
    • /
    • 2016
  • In this paper, we investigate the electrical characteristics of two trench-gate-type super-barrier rectifiers (TSBRs) under different p-body implantation conditions (low and high). Also, design considerations for the TSBRs are discussed in this paper. The TSBRs' electrical properties depend strongly on their respective p-body implantation conditions. In the case of the TSBR with a low p-body implantation condition, it exhibits MOSFET-like properties, such as a low forward voltage ($V_F$) drop, high reverse leakage current, and a low peak reverse recovery current owing to a majority carrier operation. However, in the case of the TSBR with a high p-body implantation condition, it exhibits pn junction diode.like properties, such as a high $V_F$, low reverse leakage current, and high peak reverse recovery current owing to a minority carrier operation. As a result, the TSBR with a low p-body implantation condition is capable of operating as a MOSFET, and the TSBR with a high p-body implantation condition is capable of operating as either a pn junction diode or a MOSFET, but not both at the same time.

Application of Topical Madecassoside Cream in Dogs and Cats with Skin Diseases

  • Ro, Woong-bin;Kang, Min-hee;Song, Doo-won;Kim, Heyong-seok;Lee, Ga-won;Kang, Hyun-min;Kim, Jong-won;Park, Su-bin;Jeon, Jin-ha;Keum, Jong-seon;Park, Won-keun;Ko, Jin;Sim, Sue-kyoung;Lee, Hyun-Jung;Park, Hee-myung
    • Journal of Veterinary Clinics
    • /
    • v.38 no.2
    • /
    • pp.56-62
    • /
    • 2021
  • Madecassoside, an active ingredient extracted from Centella asiatica, is used for treatment of various skin disorders in humans. However, the effect of madecassoside on the skin of dogs and cats has not been studied yet. The purpose of this study was to evaluate clinical efficacy of topical madecassoside cream in dogs and cats with skin diseases. A total of twenty-one dogs and ten cats with various skin diseases were included in the study. The 1% topical madecassoside cream was applied to the animal's skin lesion at least once a day for 7 days, and the skin condition was evaluated before the application of madecassoside cream (day 0) and 7 days after the application (day 7). The skin condition was scored by five clinical indices: canine atopic dermatitis extent and severity index-4 (CADESI-4), coat condition, pruritus, scale, and general condition. In dogs, all five clinical indices (CADESI-4, coat condition, pruritus, scale, and general condition) were significantly decreased on day 7 compared to those on day 0 (p < 0.0001, p < 0.05, p < 0.001, p < 0.01, and p < 0.05, respectively). In cats, the CADESI-4 and scale were significantly decreased on day 7 compared to those on day 0 (p < 0.01 and p < 0.05, respectively). No adverse effects were observed during the trial period in the dogs and cats included in this study. The results of this study demonstrate that the topical madecassoside cream is applicable to skin lesions in dogs and cats.

1D finite element artificial boundary method for layered half space site response from obliquely incident earthquake

  • Zhao, Mi;Yin, Houquan;Du, Xiuli;Liu, Jingbo;Liang, Lingyu
    • Earthquakes and Structures
    • /
    • v.9 no.1
    • /
    • pp.173-194
    • /
    • 2015
  • Site response analysis is an important topic in earthquake engineering. A time-domain numerical method called as one-dimensional (1D) finite element artificial boundary method is proposed to simulate the homogeneous plane elastic wave propagation in a layered half space subjected to the obliquely incident plane body wave. In this method, an exact artificial boundary condition combining the absorbing boundary condition with the inputting boundary condition is developed to model the wave absorption and input effects of the truncated half space under layer system. The spatially two-dimensional (2D) problem consisting of the layer system with the artificial boundary condition is transformed equivalently into a 1D one along the vertical direction according to Snell's law. The resulting 1D problem is solved by the finite element method with a new explicit time integration algorithm. The 1D finite element artificial boundary method is verified by analyzing two engineering sites in time domain and by comparing with the frequency-domain transfer matrix method with fast Fourier transform.

Pressure-volume-temperature gauging method experiment using liquid nitrogen under microgravity condition of parabolic flight

  • Seo, Mansu;Park, Hana;Yoo, DonGyu;Jung, Youngsuk;Jeong, Sangkwon
    • Progress in Superconductivity and Cryogenics
    • /
    • v.16 no.2
    • /
    • pp.64-69
    • /
    • 2014
  • Measuring an exact amount of remaining cryogenic liquid propellant under microgravity condition is one of the important issues of rocket vehicle. A Pressure-Volume-Temperature (PVT) gauging method is attractive due to its minimal additional hardware and simple gauging process. In this paper, PVT gauging method using liquid nitrogen is investigated under microgravity condition with parabolic flight. A 9.2 litre metal cryogenic liquid storage tank containing approximately 30% of liquid nitrogen is pressurized by ambient temperature helium gas. During microgravity condition, the inside of the liquid tank becomes near-isothermal condition within 1 K difference indicated by 6 silicon diode sensors vertically distributed in the middle of the liquid tank. Helium injection with higher mass flow rate after 10 seconds of the waiting time results in successful measurements of helium partial pressure in the tank. Average liquid volume measurement error is within 11% of the whole liquid tank volume and standard deviation of errors is 11.9. As a result, the applicability of PVT gauging method to liquid propellant stored in space is proven with good measurement accuracy.

The simulation study on natural circulation operating characteristics of FNPP in inclined condition

  • Li, Ren;Xia, Genglei;Peng, Minjun;Sun, Lin
    • Nuclear Engineering and Technology
    • /
    • v.51 no.7
    • /
    • pp.1738-1748
    • /
    • 2019
  • Previous research has shown that the inclined condition has an impact on the natural circulation (natural circulation) mode operation of Floating Nuclear Power Plant (FNPP) mounted on the movable marine platform. Due to its compact structure, small volume, strong maneuverability, the Integral Pressurized Water Reactor (IPWR) is adopted as marine reactor in general. The OTSGs of IPWR are symmetrically arranged in the annular region between the reactor vessel and core support barrel in this paper. Therefore, many parallel natural circulation loops are built between the core and the OTSGs primary side when the main pump is stopped. and the inclined condition would lead to discrepancies of the natural circulation drive head among the OTSGs in different locations. In addition, the flow rate and temperature nonuniform distribution of the core caused by inclined condition are coupled with the thermal hydraulics parameters maldistribution caused by OTSG group operating mode on low power operation. By means of the RELAP5 codes were modified by adding module calculating the effect of inclined, heaving and rolling condition, the simulation model of IPWR in inclined condition was built. Using the models developed, the influences on natural circulation operation by inclined angle and OTSG position, the transitions between forced circulation (forced circulation) and natural circulation and the effect on natural circulation operation by different OTSG grouping situations in inclined condition were analyzed. It was observed that a larger inclined angle results the temperature of the core outlet is too high and the OTSG superheat steam is insufficient in natural circulation mode operation. In general, the inclined angle is smaller unless the hull is destroyed seriously or the platform overturn in the ocean. In consequence, the results indicated that the IPWR in the movable marine platform in natural circulation mode operation is safety. Selecting an appropriate average temperature setting value or operating the uplifted OTSG group individually is able to reduce the influence on natural circulation flow of IPWR by inclined condition.

Prediction of dryout-type CHF for rod bundle in natural circulation loop under motion condition

  • Huang, Siyang;Tian, Wenxi;Wang, Xiaoyang;Chen, Ronghua;Yue, Nina;Xi, Mengmeng;Su, G.H.;Qiu, Suizheng
    • Nuclear Engineering and Technology
    • /
    • v.52 no.4
    • /
    • pp.721-733
    • /
    • 2020
  • In nuclear engineering, the occurrence of critical heat flux (CHF) is complicated for rod bundle, and it is much more difficult to predict the CHF when it is in natural circulation under motion condition. In this paper, the dryout-type CHF is investigated for the rod bundle in a natural circulation loop under rolling motion condition based on the coupled analysis of subchannel method, a one-dimensional system analysis method and a CHF mechanism model, namely the three-fluid model for annular flow. In order to consider the rolling effect of the natural circulation loop, the subchannel model is connected to the one-dimensional system code at the inlet and outlet of the rod bundle. The subchannel analysis provides the local thermal hydraulic parameters as input for the CHF mechanism model to calculate the occurrence of CHF. The rolling motion is modeled by additional motion forces in the momentum equation. First, the calculation methods of the natural circulation and CHF are validated by a published natural circulation experiment data and a CHF empirical correlation, respectively. Then, the CHF of the rod bundle in a natural circulation loop under both the stationary and rolling motion condition is predicted and analyzed. According to the calculation results, CHF under stationary condition is smaller than that under rolling motion condition. Besides, the CHF decreases with the increase of the rolling period and angular acceleration amplitude within the range of inlet subcooling and mass flux adopted in the current research. This paper can provide useful information for the prediction of CHF in natural circulation under motion condition, which is important for the nuclear reactor design improvement and safety analysis.

A Study on the Analysis of Field Condition for Ground Fault Protection Installation among Electrical Installations in the Entertainment Area (공연장의 전기설비중 지락보호설비에 대한 현장실태분석 연구)

  • Bae, S.M.;Kim, H.S.;Gil, H.J.;Lee, G.H.
    • Proceedings of the KIEE Conference
    • /
    • 2002.07c
    • /
    • pp.1721-1723
    • /
    • 2002
  • This paper deals with the analysis of field condition for earth leakage current alarming system in the stage lighting, stage sound stage machinery installation. These analyses of field condition were carried out in accordance with investigating an installation of earth leakage current alarming system with respect to a main line of power source, dimmer, sound equipment, machinery mobile unit equipment and so on. As a result of analyses. The earth leakage current alarming system has been installed only a part of the main line of power source and the probability of places which were installed was less than 50(%). Therefore, it is desirable that the earth leakage current alarming system is installed at places which are suitable, for example, dimmer, each kind machinery etc. in order to prevent electrical hazard.

  • PDF

Obliquely incident earthquake for soil-structure interaction in layered half space

  • Zhao, Mi;Gao, Zhidong;Wang, Litao;Du, Xiuli;Huang, Jingqi;Li, Yang
    • Earthquakes and Structures
    • /
    • v.13 no.6
    • /
    • pp.573-588
    • /
    • 2017
  • The earthquake input is required when the soil-structure interaction (SSI) analysis is performed by the direct finite element method. In this paper, the earthquake is considered as the obliquely incident plane body wave arising from the truncated linearly elastic layered half space. An earthquake input method is developed for the time-domain three-dimensional SSI analysis. It consists of a new site response analysis method for free field and the viscous-spring artificial boundary condition for scattered field. The proposed earthquake input method can be implemented in the process of building finite element model of commercial software. It can result in the highly accurate solution by using a relatively small SSI model. The initial condition is considered for the nonlinear SSI analysis. The Daikai subway station is analyzed as an example. The effectiveness of the proposed earthquake input method is verified. The effect of the obliquely incident earthquake is studied.

Analysis of Comparison Test and Measurement Error Factor for I - V Performance of Photovoltaic Module (PV모듈 발전성능 비교시험과 계측편차 요인 분석)

  • Kang, Gi-Hwan;Kim, Kyung-Soo;Yu, Gwon-Jong;Ahn, Hyung-Keun;Han, Deuk-Young
    • Journal of the Korean Solar Energy Society
    • /
    • v.29 no.2
    • /
    • pp.70-75
    • /
    • 2009
  • In this experiment, we did sampling 6 kinds of photovoltaic modules and analyzed the discrepancy of measurement results between l laboratory and 4 PV makers to have performance repeatability at Standard Test Condition(STC) condition. From the KIER's results, Korea's standard test laboratory, other laboratory showed -10% measurement variation. The causes came from correction of reference cell, test condition and the state of skill. Form the comparison test, we analyzed the problems. But three PV maker reduced measurement variation, other one PV maker and one test laboratory didn't improve the problems of correction of reference cell, test condition and the state of skill. Also, High Efficiency Module had a big discrepancy of -10.0$\sim$-6.2% among 3 laboratories which have a less than 10msec light pulse duration time. This made low spectrum response speed so the Fill Factor decreased maximum output power under 10msec light pulse duration time