• Title/Summary/Keyword: Lab-on-a chip

Search Result 197, Processing Time 0.029 seconds

Magnetic Bead-Based Immunoassay on a Microfluidic Lab-on-a-Chip

  • Park, Jin-Woo;Chong H. Ahn
    • The Magazine of the IEIE
    • /
    • v.29 no.3
    • /
    • pp.41-48
    • /
    • 2002
  • This paper presents a basic concept of lab-on-a-chip systems and their advantages in chemical and biological analyses. In addition, magnetic bead-based immunoassay on a microfluidic system is also presented as a typical example of lab-on-chip systems. Rapid and low volume immunoassays have been successfully achieved on the demonstrated lab-on-a-chip using magnetic beads, which are used as both immobilization surfaces and bio-molecule carriers. Total time required for an immunoassay was less than 20 minutes including sample incubation time, and sample volume wasted was less than $50{\mu}l$ during five repeated assays. Lab-on-a-chip is becoming a revolutionary tool for many different applications in chemical and biological analysis due to its fascinating advantages (fast and low cost) over conventional chemical or biological laboratories. Furthermore, simplicity of lab-on-a-chip systems will enable self-testing capability for patients or health consumers overcoming space limitation.

  • PDF

Microfluidic Device for Bio Analytical Systems

  • Junhong Min;Kim, Joon-Ho;Kim, Sanghyo
    • Biotechnology and Bioprocess Engineering:BBE
    • /
    • v.9 no.2
    • /
    • pp.100-106
    • /
    • 2004
  • Micro-fluidics is one of the major technologies used in developing micro-total analytical systems (${\mu}$-TAS), also known as “lab-on-a-chip”. With this technology, the analytical capabilities of room-size laboratories can be put on one small chip. In this paper, we will briefly introduce materials that can be used in micro-fluidic systems and a few modules (mixer, chamber, and sample prep. modules) for lab-on-a-chip to analyze biological samples. This is because a variety of fields have to be combined with micro-fluidic technologies in order to realize lab-on-a-chip.

Design and Fabrication of Mold Insert for Injection Molding of Microfluidic tab-on-a-chip for Detection of Agglutination (응집반응 검출을 위한 미세 유체 Lab on a chip의 사출성형 금형 인서트의 디자인 및 제작)

  • Choi, Sung-Hwan;Kim, Dong-Sung;Kwon, Tai-Hun
    • Transactions of Materials Processing
    • /
    • v.15 no.9 s.90
    • /
    • pp.667-672
    • /
    • 2006
  • Agglutination is one of the most commonly employed reactions in clinical diagnosis. In this paper, we have designed and fabricated nickel mold insert for injection molding of a microfluidic lab-on-a-chip for the purpose of the efficient detection of agglutination. In the presented microfluidic lab-on-a-chip, two inlets for sample blood and reagent, flow guiding microchannels, improved serpentine laminating micromixer(ISLM) and reaction microwells are fully integrated. The ISLM, recently developed by our group, can highly improve mixing of the sample blood and reagent in the microchannel, thereby enhancing reaction of agglutinogens and agglutinins. The reaction microwell was designed to contain large volume of about $25{\mu}l$ of the mixture of sample blood and reagent. The result of agglutination in the reaction microwell could be determined by means of the level of the light transmission. To achieve the cost-effectiveness, the microfluidic lab-on-a-chip was realized by the injection molding of COC(cyclic olefin copolymer) and thermal bonding of two injection molded COC substrates. To define microfeatures in the microfluidic lab-on-a-chip precisely, the nickel mold inserts of lab-on-a-chip for the injection molding were fabricated by combining the UV photolithography with a negative photoresist SU-8 and the nickel electroplating process. The microfluidic lab-on-a-chip developed in this study could be applied to various clinical diagnosis based on agglutination.

Bioseparations in Lab-On-A-Chip (랩온어칩에서의 생물분리기술)

  • Chang Woo-Jin;Koo Yoon-Mo
    • KSBB Journal
    • /
    • v.20 no.3
    • /
    • pp.197-204
    • /
    • 2005
  • Lab-on-a-chip is a miniaturized analytical device in which all of the procedures for the analysis of molecules are carried out, such as pretreatment, reaction, separation, detection, etc. Lab-on-a-chip has increasing concern as a device not only for rapid detection of molecules but also for high throughput screening and point of care, because conventional laborious and time consuming analytical procedures can be substituted. Thus, a lot of microfabrication and analytical techniques for lab-on-a-chip have been developed with microstructures smaller than a few hundreds of micrometers. Separation of the molecules is one of the most important components of lab-on-a-chip, because effective separation method can simplify the design and can provide better sensitivity. The electrokinetic separation based on capillary electrophoresis is most widely employed technique in lab-on-a-chip for the control of fluids and the separation of molecules. In this article, bioseparation techniques and its applications realized in lab-on-a-chip are reviewed.

일회용 미세유체 Lab on a Chip 제작을 위한 고분자 미세성형 기술

  • Kim, Dong-Seong
    • Journal of the KSME
    • /
    • v.50 no.1
    • /
    • pp.37-41
    • /
    • 2010
  • 최근 미세유체기술(microfluidics)을 기반으로 한 lab on a chip 기술이 기계, 의료, 바이오, 제약, 화학, 환경 분야 등의 다양한 분야에서 각광 받고 있다. 이 글에서는 일회용 고분자 lab on a chip 대량생산의 기반 기술에 해당하는 고분자 미세성형 기술에 대해 소개한다.

  • PDF

A Simulation of Advanced Multi-dimensional Isotachophoretic Protein Separation for Optimal Lab-on-a-chip Design (최적화된 Lab-on-a-chip 설계를 위한 향상된 다차원 프로틴 등속영동 시뮬레이션)

  • Cho, Mi-Gyung
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.13 no.7
    • /
    • pp.1475-1482
    • /
    • 2009
  • In this paper, a computer simulation is developed for isotachophoretic protein separation in a serpentine micro channel for optimal lab on a chip design using 2D Finite Element Method. This 2D ITP model is composed of 5 components such as hydrochloric acid as Leader, caproic acid as terminator, acetic acid and benzoic acid as two proteins, and histindine as background electrolyte. The computer model is based on mass conservation equation for 5 components, charge conservation equation for electric potential, and electro neutrality condition for pH calculation. For the validation of the 2D spatial ITP model, the results are compared with the Simul5 developed by Bohuslav Gas Group. The simulation results are in a good agreement in a ID planar channel. This proves the precision of our model. The 2Dproteinseparation is conducted in a 2D curved channel for Lab on a chip design and dispersions of proteins are revealed during the electrophoretic process in a curved shape.

Fabrication of lab-on-a-chip on quartz glass using powder blasting (파우더 블라스팅을 이용한 Quartz Glass의 Lab-on-a-chip 성형)

  • Jang, Ho-su;Park, Dong-sam
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.8 no.4
    • /
    • pp.14-19
    • /
    • 2009
  • Micro fluid channels are machined on quartz glass using powder blasting, and the machining characteristics of the channels are experimentally evaluated. The powder blasting process parameters such as injection pressure, abrasive particle size and density, stand-off distance, number of nozzle scanning, and shape/size of the required patterns affect machining results. In this study, the influence of the number of nozzle scanning, abrasive particle size, and blasting pressure on the formation of micro channels is investigated. Machined shapes and surface roughness are measured, and the results are discussed. Through the experiments and analysis, LOC are ettectinely machined on quartz glass using powder blasting.

  • PDF