• Title/Summary/Keyword: Lab-VIEW based Platform

Search Result 19, Processing Time 0.027 seconds

Development of Smart Platform based on MQTT (MQTT 기반 스마트 플랫폼 개발)

  • Kim, Gwan-hyung
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2021.05a
    • /
    • pp.283-284
    • /
    • 2021
  • The domestic and overseas IoT (Internet of Things)-based automation industry is developing remarkably, and the development of this automation technology is further accelerated by the development of sensor technology. In recent years, the smart farm industry for the purpose of growing crops based on various sensor technologies is rapidly developing. In the case of smart farms, real-time monitoring and mobile services are provided by measuring representative environmental data such as temperature, humidity, and CO2 required for crop cultivation. Most of these environmental monitoring and control operations use the RS-485-based Modbus (RTU) communication method. In this paper, we intend to test the performance of sensor data and actuator information required for smart farm construction by building a platform for controlling sensor data and actuators based on LabView using MQTT (Message Queuing Telemetry Transport), an IoT standard protocol.

  • PDF

Development of Induction machine Diagnosis System using LabVIEW and PDA (LabVIEW 기반의 PDA를 이용한 기계 진단 시스템의 개발)

  • Son, Jong-Duk;Yang, Bo-Suk;Han, Tian;Ha, Jong-Yong
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2005.05a
    • /
    • pp.945-948
    • /
    • 2005
  • Mobile computing devices are becoming increasingly prevalent in a huge range of physical area, offering a considerable market opportunity. The focus of this paper is on the development of a platform of fault diagnosis system integrating with personal digital assistant (PDA). An improvement of induction machine rotor fault diagnosis based on AI algorithms approach is presented. This network system consists of two parts; condition monitoring and fault diagnosis by using Artificial Intelligence algorithm. LabVIEW allows easy interaction between acquisition instrumentation and operators. Also it can easily integrate AI algorithm. This paper presents a development environment fur intelligent application for PDA. The introduced configuration is a LabVIEW application in PDA module toolkit which is LabVIEW software.

  • PDF

Development of Signal Monitoring Platform for Sound Source Localization System

  • Myagmar, Enkhzaya;Kwon, Soon Ryang;Lee, Dong Myung
    • Proceedings of the Korea Information Processing Society Conference
    • /
    • 2012.04a
    • /
    • pp.961-963
    • /
    • 2012
  • The sound source localization system is used to some area such as robotic system, object localization system, guarding system and medicine. So time delay estimation and angle estimation of sound direction are studied until now. These days time delay estimation is described in LabVIEW which is used to create innovative computer-based product and deploy measurement and control systems. In this paper, the development of signal monitoring platform is presented for sound source localization. This platform is designed in virtual instrument program and implemented in two stages. In first stage, data acquisition system is proposed and designed to analyze time delay estimation using cross correlation. In second stage, data obtaining system which is applied and designed to monitor analog signal processing is proposed.

Development of Multi-Crop Smart Farm Management System for User Convenience based on Lab-View (Lab-View 기반의 사용자 편의성을 위한 다작물 스마트팜 관리 시스템 개발)

  • Hwang, Jung-Tae;Kim, Young-Gon
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.22 no.1
    • /
    • pp.15-20
    • /
    • 2022
  • With the arrival of the fourth industrial era, demand for agriculture is increasing day by day, and smart farm technology, in which computers manage agriculture in line with the current situation, is developing. However, agricultural workers who use it find it difficult to set up and use a management system for smart farms. This paper aims to establish a Lab-View smart farm management system to facilitate the use of a control program for ICT technology farms (hereinafter referred to as smart farms), one of the promising projects of the next industrial revolution. Based on Lab-View, users simply set the type of crops they want to grow, set appropriate temperature/humidity data for each set crop, and collect data in real time through sensors and store it in DB. This functionality maximizes convenience and usability in terms of users.

Application of practical education program of sensor instrumentation engineering using NI-ELVIS (NI-ELVIS를 활용한 센서계측공학의 실습교육 사례)

  • Lee, Byeung-Leul;Lee, Yong-Hee
    • The Journal of Korean Institute for Practical Engineering Education
    • /
    • v.3 no.1
    • /
    • pp.76-83
    • /
    • 2011
  • In this paper we suggest an effective teaching plan for measurement engineering by utilizing the NI-ELVIS(National Instrument Educational Laboratory Virtual Instrumentation Suite). ELVIS is a development platform for LabVIEW-based design and prototyping environment. It consists of LabVIEW-based virtual instruments, a multifunctional data acquisition device, and a custom-designed benchtop workstation and prototyping board. Therefore it can replace the expensive instruments for the effective education in the area of electrical engineering. This platform can be applicable for the sensor instrumentation engineering study, though it is a multidisciplinary learning including electrical engineering, sensor technology, signal processing and data analysis. We hope this approach can be used for the other educational area related the electrical experimental education.

  • PDF

LabVIEW-based Remote Laboratory Experiments for a Multi-mode Single-leg Converter

  • Bayhan, Sertac
    • Journal of Power Electronics
    • /
    • v.14 no.5
    • /
    • pp.1069-1078
    • /
    • 2014
  • This study presents the design and implementation of a web-based remote laboratory for a multi-mode single-leg power converter, which is a topic in advanced power electronics course. The proposed laboratory includes an experimental test rig with a multi-mode single-leg power converter and its driver circuits, a measurement board, a control platform, and a LabVIEW-based user interface program that is operated in the server computer. Given that the proposed web-based remote laboratory is based on client/server architecture, the experimental test rig can be controlled by a client computer with Internet connection and a standard web browser. Although the multi-mode single-leg power converter can work at four different modes (main boost, buck-boost, boost-boost, and battery boost modes), only the buck-boost mode is used in the experiment because of page limit. Users can choose the control structure, control parameters, and reference values, as well as obtain graphical results from the user interface software. Consequently, the feedbacks received from students who conducted remote laboratory studies indicate that the proposed laboratory is a useful tool for both remote and traditional education.

LabVIEW-based User Interface Design for Multi-Integrated Navigation Systems (다중 통합항법 시스템을 위한 랩뷰 기반의 사용자 인터페이스 설계)

  • Jae Hoon Son;Junwoo Jung;Sang Heon Oh;JunMin Park;Dong-Hwan Hwang
    • Journal of Positioning, Navigation, and Timing
    • /
    • v.13 no.1
    • /
    • pp.75-83
    • /
    • 2024
  • In order to reduce the time and cost of developing a navigation system, a performance evaluation platform can be used. A User Interface (UI) is required to effectively evaluate the performance, which sets parameters and gives navigation sensor signals and data display, and also displays navigation results. In this paper, a LabVIEW-based UI design method for multi-integrated navigation systems is proposed and implementation results are presented. The UI consists of a signal and data generation part and a signal and data processing part. The signal and data generation part sets parameters for the signal and data generation and displays the navigation sensor signal and data generation results. The signal and data processing part sets parameters for the signal and data processing and displays the navigation results. The signal and data generation part and signal and data processing part are designed to satisfy the requirements of the UI for a performance evaluation of the navigation system. In order to show the usefulness of the proposed UI design method, parameters of the signal and data generation and the signal and data processing are set through the LabVIEW-based UI, and the Global Positioning System (GPS) signal and inertial measurement unit data generation results and the navigation results of a GPS Software Defined Receiver (SDR) and inertial navigation system are confirmed. The implementation results show that the proposed UI design method helps users conduct an effective performance evaluation of navigation systems.

Development and Flight Test of Unmanned Autonomous Rotor Navigation System Based on Virtual Instrumentation Platform (Virtual Instrumentation 플랫폼 기반 무인 자율 로터 항법시스템 개발 및 비행시험)

  • Lee, Byoung-Jin;Park, Sang-Jun;Lee, Seung-Jun;Kim, Chang-Joo;Lee, Young-Jae;Sung, Sang-Kyung
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.17 no.8
    • /
    • pp.833-842
    • /
    • 2011
  • The objectives of this research are development of guidance, navigation and control system for RUAV on virtual instrumentation and real flight test. For this research, the system is divided to DAQ (data acquisition) section, actuator section and controller section. And the hardware and software on each sections are realized on LabVIEW base. Waypoint guidance and control of auto flight are realized using PID gain tuning and waypoint vector tracking guidance algorism. For safe flight test, auto/manual switching module isolated from FCS (Flight Control System) is developed. By using the switch module, swift mode change was achieved during emergency flight case. Consequently, a meter level error of flight performance is achieved.

Development of a motion system operating software for a driving simulator (차량 시뮬레이터의 운동시스템 구동소프트웨어 개발)

  • 박경균;박일경;조준희;이운성;김정하
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1997.10a
    • /
    • pp.496-499
    • /
    • 1997
  • This paper describes the operating software of a motion system developed for a driving simulator, consisting of a six degree of freedom Stewart platform driven hydraulically. The drive logic, consisting of an washout algorithm, inverse kinematic analysis, and a control algorithm, has been developed and applied for creating high fidelity motion cues. The basic environment of the operating software is based on LabVIEW 4.0 and DLL modules compiled by Fortran.

  • PDF

Implementation of a citizen-driven smart city living lab community platform to improve pedestrian environment of school zone (스쿨존 보행환경 개선을 위한 시민참여형 스마트시티 리빙랩 커뮤니티 플랫폼 구현)

  • Jang, Sun-Young;Kim, Dusik
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.22 no.1
    • /
    • pp.415-423
    • /
    • 2021
  • Citizen participation and Living Lab are attracting interest as one of the major strategies for the success of smart cities. In a Living Lab, citizens, who are the end-users of technology, participate in the search for alternatives to define and solve problems and repeat experiments to verify alternatives in a circular process. The purpose of this research was to present an operating model of a citizen-participating online community platform to improve urban problems, implement and test it, and show its applicability. To this end, an operation model of a citizen-participating online community platform was proposed to improve urban problems. An online platform was designed and implemented to reflect the functions pursued by the operation model. Finally, a pilot test for the function was performed using the Oma Elementary School case located in Ilsan, Goyang-si, Gyeonggi-do. The operating model was designed with the city's pedestrian environment and children. As a result, the sharing and communicating process of urban issues among community members worked appropriately according to the designed intention. The Living Lab coordinator could visualize and view urban issues posted by users on a map based on location information. Visualizing the urban problem as a heat map confirmed that urban problems were concentrated in a specific area.