• 제목/요약/키워드: Lab-Scale Model

검색결과 172건 처리시간 0.025초

Experimental study of buckling-restrained brace with longitudinally profiled steel core

  • Lu, Junkai;Ding, Yong;Wu, Bin;Li, Yingying;Zhang, Jiaxin
    • Structural Engineering and Mechanics
    • /
    • 제81권6호
    • /
    • pp.715-728
    • /
    • 2022
  • A new type of buckling-restrained braces (BRBs) with a longitudinally profiled steel plate working as the core (LPBRB) is proposed and experimentally investigated. Different from conventional BRBs with a constant thickness core, both stiffness and strength of the longitudinally profiled steel core along its longitudinal direction can change through itself variable thickness, thus the construction of LPBRB saves material and reduces the processing cost. Four full-scale component tests were conducted under quasi-static cyclic loading to evaluate the seismic performance of LPBRB. Three stiffening methods were used to improve the fatigue performance of LPBRBs, which were bolt-assembled T-shaped stiffening ribs, partly-welded stiffening ribs and stiffening segment without rib. The experimental results showed LPBRB specimens displayed stable hysteretic behavior and satisfactory seismic property. There was no instability or rupture until the axial ductility ratio achieved 11.0. Failure modes included the out-of-plane buckling of the stiffening part outside the restraining member and core plate fatigue fracture around the longitudinally profiled segment. The effect of the stiffening methods on the fatigue performance is discussed. The critical buckling load of longitudinally profiled segment is derived using Euler theory. The local bulging behavior of the outer steel tube is analyzed with an equivalent beam model. The design recommendations for LPBRB are presented finally.

실험실 규모 순환유동층 연소로에서 2차공기 주입이 냉간유동에 미치는 영향 (Secondary Air Injection Effect on Cold Flow in a Laboratory-scale Circulating Fluidized Bed Combustor)

  • 장석돈;라승혁;황정호;강경태
    • 한국연소학회:학술대회논문집
    • /
    • 한국연소학회 2000년도 제21회 KOSCO SYMPOSIUM 논문집
    • /
    • pp.217-228
    • /
    • 2000
  • Circulating Fluidized Bed Combustor(CFBC) has been used for the incineration of waste sewage sludge and for the power generation. In this study hydrodynamic characteristics of two phase flow have been studied in a riser section of CFBC. A lab-scale riser is designed and SiC (Geldart type B) is used for solid particles. Experiments are performed by controlling the fluidization parameters including superficial velocity and secondary air to primary air ratio for determination of solid holdup profiles in the riser. Superficial velocities of each fluidization regime are well agreed with results predicted by a theoretical model. The results show that the axial solid holdup distributions calculated by measuring differential static pressures in the riser are found to show a basic profile described by a simple exponential function. Our flow regime during experiments mainly belongs to fast fluidization regime for particle size of 300${\mu}m$. As the SA/PA ratio increases, solid holdup in the lower dense region of the riser increases.

  • PDF

Microwave Drying of Sawdust for Pellet Production: Kinetic Study under Batch Mode

  • Bhattarai, Sujala;Oh, Jae-Heun;Choi, Yun Sung;Oh, Kwang Cheol;Euh, Seung Hee;Kim, Dae Hyun
    • Journal of Biosystems Engineering
    • /
    • 제37권6호
    • /
    • pp.385-397
    • /
    • 2012
  • Purpose: Drying characteristics of sawdust was studied under batch mode using lab scale microwave dryer. The objective of this study was to investigate the effect of material load and microwave output power on drying characteristics of sawdust. Methods: Material load and microwave output power were varied from 23 to 186 g and 530 to 370 W respectively. Different kinetic models were tested to fit the drying rates of sawdust. Similarly, the activation energy was calculated by employing the Arrhenius equation. Results: The drying efficiency increased considerably, whereas the specific energy consumption significantly decreased with increase in material load and microwave output power. The cumulative energy efficiency increased by 9%, and the specific energy consumption decreased by 8% when the material load was increased from 23 to 186 g. The effective diffusivity increased with decrease in material load and increase in microwave output power. The previously published model gave the best fit for data points with $R^2$ and RMSE values of 0.999 and 0.01, respectively. Conclusions: The data obtained from this study could be used as a basis for modeling of large scale industrial microwave dryers for the pellet production.

중전압 계통 연계를 위한 멀티 센트럴 대용량 태양광 발전 시스템의 공통 모드 전압 억제 (Suppression of Common-Mode Voltage in a Multi-Central Large-Scale PV Generation Systems for Medium-Voltage Grid Connection)

  • 배영상;김래영
    • 전력전자학회논문지
    • /
    • 제19권1호
    • /
    • pp.31-40
    • /
    • 2014
  • This paper describes an optimal configuration for multi-central inverters in a medium-voltage (MV) grid, which is suitable for large-scale photovoltaic (PV) power plants. We theoretically analyze a proposed common-mode equivalent model for problems associated with multi-central transformerless-type three-phase full bridge(3-FB) PV inverters employing two-winding MV transformers. We propose a synchronized PWM control strategy to effectively reduce the common-mode voltages that may simultaneously occur. In addition, we propose that the existing 3-FB topology may also have the configuration of a multi-central inverter with a two-winding MV transformer by making a simple circuit modification. Simulation and experimental results of three 350kW PV inverters in a multi-central configuration verify the effectiveness of the proposed synchronization control strategy. The modified transformerless-type 3-FB topology for a multi-central PV inverter configuration is verified using an experimental prototype of a 100kW PV inverter.

Nonlocal strain gradient theory for bending analysis of 2D functionally graded nanobeams

  • Aicha Bessaim;Mohammed Sid Ahmed Houari;Smain Bezzina;Ali Merdji;Ahmed Amine Daikh;Mohamed-Ouejdi Belarbi;Abdelouahed Tounsi
    • Structural Engineering and Mechanics
    • /
    • 제86권6호
    • /
    • pp.731-738
    • /
    • 2023
  • This article presents an analytical approach to explore the bending behaviour of of two-dimensional (2D) functionally graded (FG) nanobeams based on a two-variable higher-order shear deformation theory and nonlocal strain gradient theory. The kinematic relations are proposed according to novel trigonometric functions. The material gradation and material properties are varied along the longitudinal and the transversal directions. The equilibrium equations are obtained by using the virtual work principle and solved by applying Navier's technique. A comparative evaluation of results against predictions from literature demonstrates the accuracy of the proposed analytical model. Moreover, a detailed parametric analysis checks for the sensitivity of the bending and stresses response of (2D) FG nanobeams to nonlocal length scale, strain gradient microstructure scale, material distribution and geometry.

Nonlinear modeling of roof-to-wall connections in a gable-roof structure under uplift wind loads

  • Enajar, Adnan F.;Jacklin, Ryan B.;El Damatty, Ashraf A.
    • Wind and Structures
    • /
    • 제28권3호
    • /
    • pp.181-190
    • /
    • 2019
  • Light-frame wood structures have the ability to carry gravity loads. However, their performance during severe wind storms has indicated weakness with respect to resisting uplift wind loads exerted on the roofs of residential houses. A common failure mode observed during almost all main hurricane events initiates at the roof-to-wall connections (RTWCs). The toe-nail connections typically used at these locations are weak with regard to resisting uplift loading. This issue has been investigated at the Insurance Research Lab for Better Homes, where full-scale testing was conducted of a house under appropriate simulated uplift wind loads. This paper describes the detailed and sophisticated numerical simulation performed for this full-scale test, following which the numerical predictions were compared with the experimental results. In the numerical model, the nonlinear behavior is concentrated at the RTWCs, which is simulated with the use of a multi-linear plastic element. The analysis was conducted on four sets of uplift loads applied during the physical testing: 30 m/sincreased by 5 m/sincrements to 45 m/s. At this level of uplift loading, the connections exhibited inelastic behavior. A comparison with the experimental results revealed the ability of the sophisticated numerical model to predict the nonlinear response of the roof under wind uplift loads that vary both in time and space. A further component of the study was an evaluation of the load sharing among the trusses under realistic, uniform, and code pressures. Both the numerical model and the tributary area method were used for the load-sharing calculations.

On-line Diagnosis System with Learning Bayesian Networks for fsEBPR

  • Cheon, Seong-Pyo;Kim, Sung-Shin
    • International Journal of Fuzzy Logic and Intelligent Systems
    • /
    • 제7권4호
    • /
    • pp.279-284
    • /
    • 2007
  • Nowadays, due to development of automatic control devices and various sensors, one operator can freely handle several remote plants and processes. Automatic diagnosis and warning systems have been adopted in various fields, in order to prepare an operator's absence for patrolling plants. In this paper, a Bayesian networks based on-line diagnosis system is proposed for a wastewater treatment process. Especially, the suggested system is included learning structure, which can continuosly update conditional probabilities in the networks. To evaluate performance of proposed model, we made a lab-scale five-stage step-feed enhanced biological phosphorous removal process plant and applied on-line diagnosis system to this plant in the summer.

발포 복합재료 Pultrusion 공정에서의 발포 거동 해석 (Analysis of the foaming behavior in pultrusion process of phenolic foam composites)

  • 윤명석;정재원;이우일
    • 한국복합재료학회:학술대회논문집
    • /
    • 한국복합재료학회 2005년도 춘계학술발표대회 논문집
    • /
    • pp.130-133
    • /
    • 2005
  • An experimental and theoretical study was carried out to estimate the foaming characteristics in the pultrusion process of phenolic foam composite. For the experimental study, a lab-scale pultrusion apparatus was constructed. Methylene chloride(CH2Cl2) was used as a physical blowing agent, glass fiber roving was used as reinforcement and the polymer used was a resol type phenolic resin. Pultruded products were observed to count bubble size by a SEM(Scanning Electron Microscopy). For the theoretical study, a model for bubble growth in a gradually hardening resin was considered and solved for a few foaming conditions.

  • PDF

케이슨식 방파제 지반-구조 경계부 손상식별을 위한 실험적 모드분석 (Experimental Modal Analysis for Damage Identification in Foundation-Structure Interface of Caisson-type Breakwater)

  • 이소영;이소라;김정태
    • 한국해양공학회지
    • /
    • 제26권1호
    • /
    • pp.34-40
    • /
    • 2012
  • This paper presents an experimental modal analysis of a caisson-type breakwater to produce basic information for the structural health assessment of a caisson structure. To achieve the objective, the following approaches are implemented. First, modal analysis methods are selected to examine the modal characteristics of a caisson structure. Second, experimental modal analyses are performed using finite element analyses and lab-scale model tests. Third, damage scenarios that include several damage levels in a foundation-structure interface are designed. Finally, the effects of damage on the modal characteristics are analyzed for the purpose of utilizing them for damage identification.

Numerical Simulation of Electro-Mechanical Impedance Response in Cable-Anchor Connection Interlace

  • Nguyen, Khac-Duy;Kim, Jeong-Tae
    • 비파괴검사학회지
    • /
    • 제31권1호
    • /
    • pp.11-23
    • /
    • 2011
  • In this study, a finite element(FE) analysis on electro-mechanical impedance response of cable-anchor connection interface under various anchor force is presented. In order to achieve the objective, the following approaches are implemented. Firstly, an interface washer coupled with piezoelectric(PZT) material is designed for monitoring cable-force loss. The interface washer is a small aluminum plate on which a PZT patch is surface-bonded. Cable-force loss could be monitored by installing the interface washer between the anchor plate and the anchorage of cable-anchor connection and examining the changes of impedance of the interface washer. Secondly, a FE model for cable-anchor connection is established to examine the effect of cable-force on impedance response of interface washer. Also, the effects of geometrical and material properties of the interface washer on impedance responses under various cable-forces are investigated. Finally, validation of the FE analysis is experimentally evaluated by a lab-scale cable-anchor connection.