• 제목/요약/키워드: LVQ2

검색결과 34건 처리시간 0.021초

수정된 LVQ2 알고리즘을 이용한 음소분류 (Phoneme Classification using the Modified LVQ2 Algorithm)

  • 김홍국;이황수
    • The Journal of the Acoustical Society of Korea
    • /
    • 제12권1E호
    • /
    • pp.71-77
    • /
    • 1993
  • 패턴매칭 기법에 근거한 음성 인식 시스템은 크게 clustering 과정과 labeling 과정으로 구성된다. 본 논문에서는 Kohonen의 featrue map 알고리즘과 LVQ2 알고리즘을 각각 clusterer와 labeler로 하는 음소인식 시스템을 구성한다. 구성된 인식시스템의 성능을 향상시키기 위해서 수정된 LVQ2알고리즘(MLVQ2)을 제안한다. MLVQ2는 selective learning, LVQ2, perturbed LVQ2 그리고 기존의 LVQ2의 4단계 학습과정으로 구성된다. 제안된 음소 인식 알고리즘의 성능을 평가하기 위하여 LVQ2와 MLVQ2를 각각 사용하여 6가지의 한국어 음소군에 대한 feature map을 만든다. 음소인식 실험결과, LVQ2와 MLVQ2를 사용하는 경우 각각 60.5%와 65.4%의 인식률을 얻을 수 있었다.

  • PDF

패턴 분류 성능을 개선하기 위한 수정된 LVQ 방식 (The Modified LVQ method for Performance Improvement of Pattern Classification)

  • 엄기환;정경권;정성부
    • 전자공학회논문지CI
    • /
    • 제43권2호
    • /
    • pp.33-39
    • /
    • 2006
  • 본 논문에서는 수정된 LVQ를 이용한 패턴 분류 방식을 제안한다. 제안한 방식은 입력 패턴의 분류 성능을 개선하기 위하여 입력 벡터와 기준 벡터 사이의 확률 분포의 비대칭도를 계산하여 학습에 이용한다. 학습을 하는 동안 기준 벡터는 입력 벡터의 확률 분포에 근접하게 되고, 기준 벡터는 Bayes 분류기의 결정 경계에 근접하게 위치한다. 가우시안 분포의 데이터와 Fisher의 IRIS 데이터 분류를 실험하여 LVQ1, LVQ2, GLVQ와 비교하여 제안한 방식이 우수한 분류 성능을 나타냄을 확인하였다.

HMM Segmentation과 LVQ를 이용한 한국어 음절인식에 관한 연구 (A study on the recognition of Koreans syllable using HMM segmentation and LVQ)

  • 안종영
    • 한국음향학회:학술대회논문집
    • /
    • 한국음향학회 1994년도 제11회 음성통신 및 신호처리 워크샵 논문집 (SCAS 11권 1호)
    • /
    • pp.378-382
    • /
    • 1994
  • HMM 세그멘테이션을 이용하여 LVQ 알고리즘에 적용시킨 하이브리드 음성인식에 관한 연구이다. LVQ 학습알고리즘은 정적 패턴 분리를 위한 참조벡터 즉, 고정차원인 벡터들을 생성하는데 유리하다. 하이브리드 알고리즘은 정적패턴 인식에 사용 되어지는 LVQ 알고리즘에 HMM 세그멘테이션을 접목시켜 입력패턴을 정규화된 의미있는 값으로서 바꾸어 사용하는데 있다. 한국어 음절중 8개 모음 아, 이, 우, 에, 오, 애, 어, 으를 추출하여 인식실험을 하였다. 인식률은 화자종속일 경우 코드북수 256개를 기준으로 LVQ1, LVQ2, LVQ3, OLVQ1 알고리즘순으로 91.7%, 91.8%, 91.1%의 인식률을 구했고 화자 독립의 경우는 83.4%, 83.9%, 86.8%, 85.3%의 인식률을 구했다.

  • PDF

LVQ(Learning Vector Quantization)을 퍼지화한 학습 법칙을 사용한 퍼지 신경회로망 모델

  • 김용수
    • 한국지능정보시스템학회:학술대회논문집
    • /
    • 한국지능정보시스템학회 2005년도 춘계학술대회
    • /
    • pp.186-189
    • /
    • 2005
  • 본 논문에서는 LVQ를 퍼지화한 새로운 퍼지 학습 법칙들을 제안하였다. 퍼지 LVQ 학습법칙 1은 기존의 학습률 대신에 퍼지 학습률을 사용하였는데 이는 조건 확률의 퍼지화에 기반을 두고 있다. 퍼지 LVQ 학습법칙 2는 클래스들 사이에 존재하는 입력벡터가 결정 경계선에 대한 정보를 더 가지고 있는 것을 반영한 것이다. 이 새로운 퍼지 학습 법칙들을 improved IAFC(Integrted Adaptive Fuzzy Clustering)신경회로망에 적용하였다. improved IAFC신경회로망은 ART-1 (Adaptive Resonance Theory)신경회로망과 Kohonen의 Self-Organizing Feature Map의 장점을 취합한 퍼지 신경회로망이다. 제안한 supervised IAFC 신경회로망 1과 supervised IAFC neural 신경회로망 2의 성능을 오류 역전파 신경회로망의 성능과 비교하기 위하여 iris 데이터를 사용하였는데 Supervised IAFC neural network 2가 오류 역전파 신경회로망보다 성능이 우수함을 보여주었다.

  • PDF

근전도 패턴인식을 위한 혼합형 LVQ 학습 알고리즘 (The Hybrid LVQ Learning Algorithm for EMG Pattern Recognition)

  • 이용구;최우승
    • 한국컴퓨터정보학회논문지
    • /
    • 제10권2호
    • /
    • pp.113-121
    • /
    • 2005
  • 본 논문에서는 근전도 패턴인식을 수행하기 위한 혼합 LVQ 학습 알고리즘을 설계하였다. 제안된 혼합 LVQ 학습 알고리즘은 초기 참조벡터의 학습을 위해 SOM을 이용하고, LVQ 출력뉴런의 부류지정을 위하여 out-star학습법을 사용하는 변형된 C.p Net.이다. 제안된 C.p. Net.의 입력 층과 종속 클래스 층 사이의 연결강도는 SOM과 LVQ 알고리즘을 이용하여 초기 참조벡터의 설정 및 학습이 가능하게 하였고, 패턴벡터를 종속 클래스 층의 뉴런에 의해 종속 클래스로 분류하고, C.p. Net.의 종속 클래스 층과 클래스 층 사이의 연결강도는 분류된 종속 글래스를 클래스로 지정하는 학습을 하게 된다 근전도 패턴 분류를 위하여 제안된 학습알고리즘을 이용하여 시뮬레이션 되었고 기존의 LVQ 학습방식 보다 우수한 분류성공률을 확인하였다.

  • PDF

부분공간과 LVQ 분류기에 기반한 실시간 얼굴 인식 (Real-Time Face Recognition Based on Subspace and LVQ Classifier)

  • 권오륜;민경필;전준철
    • 인터넷정보학회논문지
    • /
    • 제8권3호
    • /
    • pp.19-32
    • /
    • 2007
  • 본 논문에서는 실시간 얼굴인증 시스템의 구축을 위한 LVQ 신경망 기반의 새로운 얼굴 인식 방법을 제안한다. 기존의 연구에서 PCA, LDA 변환이 많이 적용되며 신경망을 결합한 형태가 제안되고 있지만 신경망 학습 시간이 오래 걸리는 단점을 가지고 있다. LVQ 신경망은 학습 시간이 짧고 클래스간의 분리도를 최대화할 수 있는 교사학습방법이다. 따라서, 본 논문에서 제안된 방법은 동영상으로부터 실시간으로 입력되는 얼굴영상을 PCA와 LDA변환을 순차적으로 적용하여 부분공간상의 변환된 특징벡터로부터 LVQ 신경망의 학습을 통하여 얼굴을 인식한다. 외부조명의 영향에 강건한 인식시스템을 구축하기 위하여 얼굴검출 단계에서 검출된 얼굴영역은 밝기값의 최대-최소 정규화 방법에 의해 보정된 정규화 영상을 생성한다. 정규화된 얼굴영상은 PCA와 LDA 변환을 통해 부분공간상의 특징벡터로 변환된다. 변환된 훈련 데이터로부터 LVQ 신경망의 초기 중심 벡터를 결정하고 신경망의 학습률 향상을 위해 K-Means 클러스터링 알고리즘을 적용하며, 초기 중심 벡터를 이용하여 LVQ2 학습 방법에 의해 학습된 중심벡터는 클래스의 대표 벡터가 된다. 결국 각 클래스의 대표 벡터로부터 입력 영상의 특징벡터간의 유클리디언 거리 비교법을 적용하여 얼굴 인식을 수행한다. ORL 데이터베이스를 이용한 정지 영상에 대한 인식과 실시간으로 입력되는 영상에 대한 인식 등 두 가지 형태의 영상을 기반으로 실험한 결과 두 경우에 모두 제안된 방법이 기존의 인식 방법보다 인식률에서 우수함을 입증할 수 있었다.

  • PDF

A Performance Comparison of Backpropagation Neural Networks and Learning Vector Quantization Techniques for Sundanese Characters Recognition

  • Haviluddin;Herman Santoso Pakpahan;Dinda Izmya Nurpadillah;Hario Jati Setyadi;Arif Harjanto;Rayner Alfred
    • International Journal of Computer Science & Network Security
    • /
    • 제24권3호
    • /
    • pp.101-106
    • /
    • 2024
  • This article aims to compare the accuracy of the Backpropagation Neural Network (BPNN) and Learning Vector Quantization (LVQ) approaches in recognizing Sundanese characters. Based on experiments, the level of accuracy that has been obtained by the BPNN technique is 95.23% and the LVQ technique is 66.66%. Meanwhile, the learning time that has been required by the BPNN technique is 2 minutes 45 seconds and then the LVQ method is 17 minutes 22 seconds. The results indicated that the BPNN technique was better than the LVQ technique in recognizing Sundanese characters in accuracy and learning time.

LVQ Network를 적용한 순방향 비터비 복호기 (Forward Viterbi Decoder applied LVQ Network)

  • 박지웅
    • 한국통신학회논문지
    • /
    • 제29권12A호
    • /
    • pp.1333-1339
    • /
    • 2004
  • IS-95와 IMT-2000 시스템에서 사용되고 있는 여러 종류의 길쌈 부호기를 부호율 1/2, 구속장 3인 길쌈 부호기로 한정하여, neural network의 LVQ(Learning Vector Quantization)과 PVSL(Prototype Vector Selecting Logic)을 적용하여 비터비 복호기에서 사용되는 PM(Path Metric)과 BM(Branch Metric) 메모리 수와 산술$.$비교 연산량을 줄임으로써 시스템의 단순화와 순방향 복호를 가능하게 한다. 구속장의 확장성 여부와 관계없이 간단한 응용으로 기존의비터비 복호기에 적용할 수 있는 새로운 비터비 복호기의 구조와 적용 알고리즘을 제시하고, 제시된 비터비 복호기의 합리성을 VHDL 시뮬레이션으로 검증 후, 기존의 복호기와의 성능을 비교 분석한다.

LVQ와 ADALINE을 이용한 학습 알고리듬 (Learning Algorithm using a LVQ and ADALINE)

  • 윤석환;민준영;신용백
    • 산업경영시스템학회지
    • /
    • 제19권39호
    • /
    • pp.47-61
    • /
    • 1996
  • We propose a parallel neural network model in which patterns are clustered and patterns in a cluster are studied in a parallel neural network. The learning algorithm used in this paper is based on LVQ algorithm of Kohonen(1990) for clustering and ADALINE(Adaptive Linear Neuron) network of Widrow and Hoff(1990) for parallel learning. The proposed algorithm consists of two parts. First, N patterns to be learned are categorized into C clusters by LVQ clustering algorithm. Second, C patterns that was selected from each cluster of C are learned as input pattern of ADALINE(Adaptive Linear Neuron). Data used in this paper consists of 250 patterns of ASCII characters normalized into $8\times16$ and 1124. The proposed algorithm consists of two parts. First, N patterns to be learned are categorized into C clusters by LVQ clustering algorithm. Second, C patterns that was selected from each cluster of C are learned as input pattern of ADALINE(Adaptive Linear Neuron). Data used in this paper consists 250 patterns of ASCII characters normalized into $8\times16$ and 1124 samples acquired from signals generated from 9 car models that passed Inductive Loop Detector(ILD) at 10 points. In ASCII character experiment, 191(179) out of 250 patterns are recognized with 3%(5%) noise and with 1124 car model data. 807 car models were recognized showing 71.8% recognition ratio. This result is 10.2% improvement over backpropagation algorithm.

  • PDF

음소 인식을 위한 수정된 LVQ2 알고리즘의 고찰 (A Modified LVQ2 Algorithm for Phonemes Recognition)

  • 황철준
    • 한국음향학회:학술대회논문집
    • /
    • 한국음향학회 1996년도 영남지부 학술발표회 논문집 Acoustic Society of Korean Youngnam Chapter Symposium Proceedings
    • /
    • pp.76-79
    • /
    • 1996
  • 본 논무에서는 한국어 음소를 대상으로 Kohonen 이 제안한 LVQ2 방법의 결저을 보완한 MLVQ2 방법으로 인식실험을 행하고 MLVQ2 알고리즘의 유효성을 검토하고자 한다. 인식실험을 위한 음성자료는 ETRI 611단어로부터 추출한 49음소를 사용하였다. 그리고 인식실험에 있어서는 먼저 파열음을 대상으로 학습회수, 표준패턴의 수, 샘플수에 따른 인식률의 변화를 조사하였으며, 이 결과 표준패턴의 수 15개, 학습회수 10회 이하, 샘플 수 3000 개일 경우가 가장 좋은 인식률을 보였다. 이 결과를 참고로 음소군별 인식실험 결과 모음 69.11%, 파열음 74.69%, 마찰음 및 파찰음 86.31%비음 및 유음 74.51%의 평균 인식률을 얻었다. 또한 , 한국어 49음소 전음소에 대한 인식실험 결과 71.2%의 인식률 얻어 MLVQ2의 유효성을 확인하였다.

  • PDF