• Title/Summary/Keyword: LVDC System

Search Result 39, Processing Time 0.018 seconds

A Study on Protection Coordination Algorithm for Separating Fault Section in LVDC Distribution System (LVDC 배전계통에 있어서 사고구간분리 보호협조 알고리즘에 관한 연구)

  • Kang, Min-Kwan;Lee, Hu-Dong;Tae, Dong-Hyun;Rho, Dae-Seok
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.22 no.1
    • /
    • pp.768-776
    • /
    • 2021
  • Current protection-coordination methods use the reverse time characteristics of the T-C curve, which is not effective for a LVDC distribution system because the protective operation time of converters and DC circuit breakers is much faster than AC protection devices. Therefore, an algorithm is proposed for fault-section isolation using the fault current slope to minimize the blackout region and coordinate between converters and protection devices in a rapid and accurate manner. The method deals with the slope characteristics of a fault current, which may depend on the fault location in an LVDC distribution system. Thus, an LVDC distribution system can be operated in a stable manner by isolating the fault section selectively before the shutdown of the main converter using slope characteristics, which change in proportion to the line impedance and fault location. A 1.5-kV LVDC distribution system was modeled to verify the effectiveness of the proposed algorithm using PSCAD/EMTDC. The system is composed of a distribution substation, LVDC converter, and distribution lines. The simulation results confirm that the proposed algorithm is a useful tool for minimizing the fault section in an LVDC distribution system.

Analysis for Pole to Ground Fault Detection in Ungrounded LVDC Distribution Network (비접지 LVDC 배전망의 지락고장 검출을 위한 분석)

  • Park, Chul-Won
    • The Transactions of the Korean Institute of Electrical Engineers P
    • /
    • v.67 no.3
    • /
    • pp.119-124
    • /
    • 2018
  • Recently, LVDC distribution network and DC microgrid with many advantages are being built. However, this LVDC distribution is an IT grounded or ungrounded system, and it is difficult to detect a ground fault because the fault current is small. In this paper, we propose a signal injection method for unipolar LVDC distribution network to detect ground fault in ungrounded LVDC distribution, and various analyzes were performed for ground fault detection.

A Reliability Analysis in LVDC Distribution System Considering Power Quality (전력품질을 고려한 LVDC 배전계통의 신뢰도 분석)

  • Noh, Chul-Ho;Kim, Chung-Mo;Kim, Doo-Ung;Gwon, Gi-Hyeon;Oh, Yun-Sik;Han, Jun;Kim, Chul-Hwan
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.29 no.4
    • /
    • pp.54-61
    • /
    • 2015
  • Recently, DC-based power system is being paid attention as the solution for energy efficiency. As the example, HVDC (High Voltage DC) transmission system is utilized in the real power system. On the other hand, researches on LVDC (Low Voltage DC) distribution system, which are including digital loads, are not enough. In this paper, reliability in LVDC distribution system is analyzed according to the specific characteristics such as the arrangement of DC/DC converters and the number of poles. Furthermore, power quality is also taken account of since LVDC distribution system includes multiple sensitive loads and electric power converters. In order to achieve this, LVDC distribution systems are modeled using ElectroMagnetic Transient Program (EMTP) and both the minimal cut-set method and Customer Interruption Cost (CIC) are used in the reliability analysis.

A Study on the Fault Analysis of the LVDC Using PSCAD/EMTDC (PSCAD/EMTDC를 활용한 LVDC 고장분석)

  • Kim, Soo-Hwan;Choi, Gyu-Wan;Moon, Jong-Fil;Kim, Tae-Hoon;Kim, Ju-Yong
    • The Transactions of the Korean Institute of Electrical Engineers P
    • /
    • v.65 no.3
    • /
    • pp.219-223
    • /
    • 2016
  • DC microgrid system is attracted attention in the world, because DC distribution system is more energy efficient than AC distribution system. To analyse the contribution effects of distributed generation(DG) in LVDC distribution system through modeling the Rectifier, DC/DC converter, Energy Storage System(ESS) and Photovoltaic(PV). using PSCAD/EMTDC. This paper analyses fault response characteristics in LVDC distribution system according to the interconnection and islanding operation of DG. Based on research results on the paper, direction for development of fault current reduction method for LVDC distribution system is suggested.

Coordinated Voltage Control Scheme for Multi-Terminal Low-Voltage DC Distribution System

  • Trinh, Phi Hai;Chung, Il-Yop;Kim, Taehoon;Kim, Juyong
    • Journal of Electrical Engineering and Technology
    • /
    • v.13 no.4
    • /
    • pp.1459-1473
    • /
    • 2018
  • This paper focuses on voltage control schemes for multi-terminal low-voltage direct current (LVDC) distribution systems. In a multi-terminal LVDC distribution system, there can be multiple AC/DC converters that connect the LVDC distribution system to the AC grids. This configuration can provide enhanced reliability, grid-supporting functionality, and higher efficiency. The main applications of multi-terminal LVDC distribution systems include flexible power exchange between multiple power grids and integration of distributed energy resources (DERs) using DC voltages such as photovoltaics (PVs) and battery energy storage systems (BESSs). In multi-terminal LVDC distribution systems, voltage regulation is one of the most important issues for maintaining the electric power balance between demand and supply and providing high power quality to end customers. This paper focuses on a voltage control method for multi-terminal LVDC distribution system that can efficiently coordinate multiple control units, such as AC/DC converters, PVs and BESSs. In this paper, a control hierarchy is defined for undervoltage (UV) and overvoltage (OV) problems in LVDC distribution systems based on the control priority between the control units. This paper also proposes methods to determine accurate control commands for AC/DC converters and DERs. By using the proposed method, we can effectively maintain the line voltages in multi-terminal LVDC distribution systems in the normal range. The performance of the proposed voltage control method is evaluated by case studies.

Brightness Controllable LVDC LED Lightings Based on IoT (밝기 제어가 가능한 IoT기반 LVDC LED조명 시스템)

  • Lee, Yoen-Seok;Park, Gun-Pil;Choi, Sang-Ui
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.65 no.1
    • /
    • pp.158-164
    • /
    • 2016
  • That's the reason why LED lighting has to employ AC power inlet. However, LED is a kind of diode, semiconductor, it's driven by DC power. With whis reason all of LED lighting should have AC/DC converter in its systems. This converter causes energy loss, it's the target for lesson the energy loss. To reduce this energy loss, DC power distribution structure can be used. LED lighting system using LVDC is a kind of DC power distribution structure, but LVDC has severe voltage drop which makes non-uniform brightness in lighting system. In this paper, we suggest a novel structure for the uniform brightness in LVDC LED lighting system using IoT based network system. The constructed test-bed system of suggested structure shows this structure can con control the brightness with uniformity.

Analysis of Human Safety and System Effect according to Grounding Scheme in LVDC Distribution System (LVDC 배전계통의 접지방식에 따른 인체안전 및 계통영향 분석)

  • Oh, Yun-Sik;Han, Joon;Gwon, Gi-Hyeon;Kim, Doo-Ung;Noh, Chul-Ho;Jung, Tack-Hyun;Kim, Chul-Hwan
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.63 no.5
    • /
    • pp.608-614
    • /
    • 2014
  • Recent developments and trends in the electric power consumption clearly indicate an increasing use of DC in end-user equipment. According to the trends, new DC power distribution systems have been researched and developed although we presently enjoy a predominantly AC power distribution system. We can use various grounding schemes in DC distribution system as well as in AC distribution system to protect human body and equipments. However, we need to evaluate carefully which grounding scheme is appropriate for a specific system before applying those schemes. In this paper, we analyze the human safety and system effect according to various grounding schemes in Low Voltage DC (LVDC) distribution system. Some components in LVDC distribution system are modeled and computer simulations are conducted by using ElectroMagnetic Transient Program (EMTP).

Development of an Algorithm for Detecting High Impedance Fault in Low Voltage DC Distribution System using Accumulated Energy of Fault Current (고장전류의 누적 에너지를 이용한 저압직류 배전계통의 고저항 지락고장 검출 알고리즘 개발)

  • Oh, Yun-Sik;Noh, Chul-Ho;Kim, Doo-Ung;Gwon, Gi-Hyeon;Han, Joon;Kim, Chul-Hwan
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.29 no.5
    • /
    • pp.71-79
    • /
    • 2015
  • Recently, new Low Voltage DC (LVDC) power distribution systems have been constantly researched as uses of DC in end-user equipment are increased. As in conventional AC distribution system, High Impedance Fault (HIF) which may cause a failure of protective relay can occur in LVDC distribution system as well. It, however, is hard to be detected since change in magnitude of current due to the fault is too small to detect the fault by the protective relay using overcurrent element. In order to solve the problem, this paper presents an algorithm for detecting HIF using accumulated energy in LVDC distribution system. Wavelet Singular Value Decomposition (WSVD) is used to extract abnormal high frequency components from fault current and accumulated energy of high frequency components is considered as the element to detect the fault. LVDC distribution system including AC/DC and DC/DC converter is modeled to verify the proposed algorithm using ElectroMagnetic Transient Program (EMTP) software. Simulation results considering various conditions show that the proposed algorithm can be utilized to effectively detect HIF.

A Study on Operation Method of Protection Device for LVDC Distribution Feeder in Light Rail System (경전철용 LVDC 배전계통의 보호기기 운용 방안에 관한 연구)

  • Kang, Min-Kwan;Choi, Sung Sik;Lee, Hu-Dong;Kim, Gi-Yung;Rho, Dae-Seok
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.20 no.4
    • /
    • pp.25-34
    • /
    • 2019
  • Recently, when a fault occurs at a long-distance point in a LVDC (low voltage direct current) distribution feeder in a light rail system, the magnitude of the current can decrease to less than that of the load current of a light rail system. Therefore, proper protection coordination method to distinguish a fault current from a load current is required. To overcome these problems, this paper proposes an optimal algorithm of protection devices for a LVDC distribution feeder in a light rail system. In other words, based on the characteristics of the fault current for ground resistance and fault location, this paper proposes an optimal operation algorithm of a selective relay to properly identify the fault current compared to the load current in a light rail system. In addition, this paper modelled the distribution system including AC/DC converter using a PSCAD/EMTDC S/W and from the simulation results for a real light rail system, the proposed algorithm was found to be a useful and practical tool to correctly identify the fault current and load current.

A Study on Fault Current Calculation of ±750[V] DC Distribution Grid (±750[V] 직류배전망의 고장전류 산정에 관한 연구)

  • Lee, Kyung-Min;Park, Chul-Won
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.67 no.10
    • /
    • pp.1286-1291
    • /
    • 2018
  • In recent years, the proliferation of DER (distributed energy resources) is progressing rapidly. In particular, research on LVDC distribution grid with various advantages has begun. In order to commercialize this LVDC grid, direct current protection method should be established by analysis of DC faults. Recently, the development of HSCB (high-speed circuit breaker) for new ${\pm}750[V]$ LVDC grid has been researched. This paper deals with the calculation of the maximum short-circuit fault current of the HSCB as a part of the development of HSCB for the LVDC distribution grid. First, modeling using PSCAD was carried out for PV array with BESS on the Gochang Power Test Center system. Next, to calculate the rated capacity of HSCB, fault currents were calculated and the characteristics were analyzed through fault simulations. Thus, this study results can help to establish short-circuit capacity calculation of HSCB and protection plan for DC protection relay system.