• Title/Summary/Keyword: LVC Model

Search Result 12, Processing Time 0.026 seconds

A Study on the Interoperability of ROK Air Force Virtual and Constructive Simulation (공군 전투기 시뮬레이터와 워게임 모델의 V-C 연동에 대한 연구)

  • Kim, Yong Hwan;Song, Yong Seung;Kim, Chang Ouk
    • Journal of the Korea Society for Simulation
    • /
    • v.28 no.2
    • /
    • pp.169-177
    • /
    • 2019
  • LVC(Live-Virtual-Constructive) training system is drawing attention due to changes in battlefield situation and the development of advanced information and communication technologies. The ROKAF(Republic of Korea Air Force) plans to construct LVC training system capable of scientific training. This paper analyzes the results of V-C interoperability test with three fighter simulators as virtual systems and a theater-level wargame model as a constructive system. The F-15K, KF-16, and FA-50 fighter simulators, which have different interoperable methods, were converted into a standard for simulation interoperability. Using the integrated field environment simulator, the fighter simulators established a mutually interoperable environment. In addition, the Changgong model, which is the representative training model of the Air Force, was converted to the standard for simulation interoperability, and the integrated model was implemented with optimized interoperability performance. Throughput experiments, It was confirmed that the fighter simulators and the war game model of the ROKAF could be interoperable with each other. The results of this study are expected to be a good reference for the future study of the ROKAF LVC training system.

Forecasting of ADSL vs VDSL; by Using Lotka-Volterra Competition (LVC) Model

  • Cho, Byung-sun;Cho, Sang-Sup
    • Journal of Korea Technology Innovation Society
    • /
    • v.6 no.2
    • /
    • pp.213-227
    • /
    • 2003
  • 초고속 인터넷 서비스는 사용자수의 증가와 더불어 고객의 다양한 욕구 즉 인터넷 방송, 주문형비디오(VOD)서비스, 원격교육, 고화질 TV 등 대용량의 멀티미디어 서비스에 대한 욕구가 폭발적으로 증가하고 있다. 이러한 욕구를 충족하기 위해서는 현재의 초고속 인터넷서비스로서는 속도에 대한 한계에 부딪치게 되어 통신사업자들은 새로운 기술 또는 여러 가지 기술적 대안들을 추구하고 있다. 2002년부터 시작하여 2003년 이후에는 멀티미디어 수요의 증가에 따라 ADSL을 대체하는 기술로 VDSL이 등장하여 매년 꾸준한 신규가입자 수요가 발생하고 있으나, 통신사업자들은 각각의 망 특성, 시장위치, 전략적 필요성 둥에 의해 상용화를 적극 검토,추진하고 있으나 각각 전개하는 방식은 조금씩 다르다. 따라서 본 연구에서는 통신사업자들의 가입자망 진화 전략에 대해 살펴 본 다음 Lot3n-Volterra Competition (LVC) 모델을 이용 ADSL 과 VDSL 두 기술간의 상호 경쟁 및 대체를 통해 어떻게 진화 되어가는지를 살펴보았다. 대표적인 통신사업자인 KT는 막강한 자금력을 바탕으로 시장 확대 및 경쟁사와의 차별화를 위해 VDSL 서비스 조기도입을 서두르고 있고, 하나로는 자금의 열세로 인한 ADSL 투자비를 회수 할때까지 VDSL 서비스를 연기하고 있는 실정이다. ADSL과 VDSL 두 기술의 관계는 Lotka-Volterra Competition (LVC) 모델을 이용한 시뮬레이션 결과를 통해 빠른 속도와 비슷한 가격대의 VDSL이 침략자(predator)로 기존 시장 지배자인 ADSL을 사냥감(prey)으로 빠른 속도로 대체해 나가는 것을 알 수 있었다.

  • PDF

V&V of Integrated Interoperability System for LVC Simulation on Aircraft Weapon System (항공무기체계 LVC 시뮬레이션을 위한 통합연동시스템 V&V)

  • Oh, Jihyun;Jang, Young Chan;Kim, Cheon Young;Jee, Cheol Kyu;Hong, Young Seok
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.18 no.3
    • /
    • pp.326-334
    • /
    • 2015
  • This paper describes the verification and the validation about the development of the integrated interoperability system for live, virtual, and constructive simulations on the aircraft weapon system. The proposed integrated interoperability system provides the framework and application softwares for implementing a synthetic environment emulating real-world environment among distributed simulation models, which are a mission model and an air combat model of a constructive level, an tactical simulator of a virtual level, and simulated ACMI of a live level. In this paper, we verify requested functions through an developmental test and evaluation, and validate operability and usability through conducing integrated LVC scenarios on the integrated interoperability system.

The Design and implementation of LVC Integrated Architecture Technology building division-level L-V-C Interoperability Training System (사단급 L-V-C연동훈련체계 구축을 위한 LVC통합아키텍쳐기술 설계 및 구현)

  • Won, Kyoungchan;Koo, JaHwan;Lee, Hojun;Kim, Yong-Pil
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.22 no.5
    • /
    • pp.334-342
    • /
    • 2021
  • In Korea, the training is performed through independent environments without interoperability among L-V-C systems. In the L system, training for large units is limited due to civil complaints at the training grounds and road restrictions. The V system is insufficient in training related to tactical training, and the C system lacks practicality due to a lack of combat friction elements. To achieve synchronicity and integration training between upper and lower units, it is necessary to establish a system to ensure integrated training for each unit by interoperating the currently operating L, V, and C systems. The interoperability between the C-C system supports Korea-US Combined Exercise. On the other hand, the actual development of the training system through the interoperability of L, V, and C has not been made. Although efforts are being made to establish the L, V, and C system centering on the Army, the joint composite battlefield and LVC integrated architecture technology are not yet secured. Therefore, this paper proposes a new plan for the future training system by designing and implementing the LVC integrated architecture technology, which is the core technology that can build the L-V-C interoperability training system. In conclusion, a division-level L-V-C interoperability training system can be established in the future by securing the LVC integrated architecture technology.

LVC-Interoperation Development Framework for Acquiring High Reliable Cyber-Physical Weapon Systems (고신뢰 사이버-물리 무기체계 획득을 위한 LVC 연동 개발 프레임워크)

  • Kang, Sungjoo;Kim, Minjo;Park, Jungmin;Chun, Ingeol;Kim, Wontae
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.38C no.12
    • /
    • pp.1228-1236
    • /
    • 2013
  • In this paper, we present a development framework for acquiring intelligent but complex cyber-physical weapon systems based on modeling and simulation development tools for cyber-physical systems, EcoSUITE. We introduce EcoPOD that models weapon systems and EcoSIM that provides constructive simulation environment for interoperating the weapon model to be developed with other weapon models. To develop cyber-physical weapon system based on LVC interoperation, an interoperation architecture and an interface technique for a live and a virtual system that is compliant with the interoperation architecture. By expanding EcoSuite, we provide LVC-based development framework for interoperating a real system, a human-interactive interface system, and simulation models and validate it with a case study.

Forecasting Next Generation Technology Using Lotka-Volterra Competition Model and Factors for Technology Substitution (기술대체 영향요인과 Lotka-Volterra 경쟁 모형을 이용한 차세대 기술 예측)

  • Kim, Hyein;Jeong, Yujin;Yoon, Byungun
    • Journal of Korea Technology Innovation Society
    • /
    • v.20 no.4
    • /
    • pp.1262-1287
    • /
    • 2017
  • Recently, forecasting for next-generation technologies have influenced the competitiveness of companies. However, in previous studies, only extract factors influencing the adoption of technology have been investigated. Also, there are few researches on the importance of each decision factors or the competition between technologies. In this research, Lotka-Volterra model is used to confirm the technological competition in the new technology choice timing when the competition is intensified due to the emergence of new technologies. For purpose of this study, estimate the LVC model based on the data of the past competition and then derived the factors affecting the technology of competition and substitution from the literature survey. After that, we confirmed the factor value between the past and the present technology competition. The difference between the factor values derived from the previous step is used to revise the model estimated from the past data base. At this stage, regression analysis is used to derive the importance of each factor and use it as the weight. Through the correction model, the competitiveness is identified through 1:1 comparison with competition candidate technology and existing dominant design technology. In this research, we quantitatively propose the possibility that a specific technology can become a dominant design in the next generation, based on the difference in factor values and importance. This results will help the company's R&D strategy and decision making.

A Study on the Method of Constructive Simulation Operation Analysis for Warfighting Experiment Supplied with the Validation Evaluation (타당성 평가가 보완된 모델 운용상의 전투실험 모의분석 절차 연구)

  • Park, Jin-Woo;Kim, Nung-Jin;Kang, Sung-Jin;Soo, Hyuk
    • Journal of the Korea Society for Simulation
    • /
    • v.19 no.4
    • /
    • pp.77-87
    • /
    • 2010
  • Currently, our society has been changed from the industrial society to the information society. As the war progresses to Information Warfare, Network-Centric Warfare, Long-Range Precision Engagement and Robot Warfare, the military should advance to High-tech Scientific force. For this creation of the war potential, it is regarded as the warfighting experiment is a critical method. Surely it is rational that LVC(Live Virtual Constructive simulation) is desirable to make the warfighting experiment. But because it is limited by the cost, the time, the place and the resource, the constructive simulation(M&S : Modeling&Simulation) is a good tool to solve those problems. There are some studies about the evaluation process for developing the model, but it is unsatisfying in the process of the constructive simulations' operation. This study focuses on the way of constructive simulation operation, which is supplied with the evaluation process(VV&A : Verification Validation & Accreditation). We introduce the example of the rear area operation simulation for "appropriateness evaluation to the organization of logistic corps" by the AWAM(Army Weapon Analysis Model). This study presents the effective methods of the constructive simulations, which is based on the reliable evaluation process, so it will contribute to the warfighting experiments.

Cellular Toxicity of Adriamycin Eluted from Adriamycin-impregnated Bone Cement (항암제 함유 골시멘트에서 유리되는 아드리아마이신의 세포 독성)

  • Jang, Dong-Wook;Lee, Dong-Sin;Choi, Sun-Sil;Choi, Seung-Jun;Awe, Soo-Ik;Kim, Byoung-Suck
    • The Journal of the Korean bone and joint tumor society
    • /
    • v.7 no.1
    • /
    • pp.1-12
    • /
    • 2001
  • Purpose : To elucidate possibility of local chemotherapy from adraimycin-impregnated bone cement. Materials and Methods : Authors used 4 kinds of bone cements, Palcos R, LVC, CMW 3, Simplex P for this experimental model, included 2.5mg, 5mg, 25mg of adriamycin, respectively. We compared the differences of eluted-adriamycin concentrations between the cylindrical shape and the flat shape of bone cements, between ddH2O, 0.45% saline, 0.9% saline, and 3% saline as one of environmental conditions. Osteosarcoma cell line, Saos-2 were cultured under $37^{\circ}C$, 5% $CO_2$ in the humidified incubator with three different concentrations of adriamycinimpregnated bone cements and cellular toxicity of adriamycin eluted from bone cement was analysed according to MTT assay. Results : Authors noticed the flat shape of bone cement eluted more concentrations of adriamycin than the cyclindrical shape, bone cement immersed in 3% saline, more than 0.9% or 0.45% saline. Concentrations of adriamycin eluted from CMW 3 or Simplex R were more than Palacos R or LVC. Saos-2 were cultured with 2.5mg, 5mg, 25mg of adriamycin-impregnated bone cement, respectively, and their cellular toxicity were 95%, 98%, 99%, each. Conclusion : Adriamycin-impregnated bone cement can be one of anticancer-drug delivery sytems as possible local chemotherapy.

  • PDF

A Study on The Framework of Converting an Object Model for Interoperating between Heterogeneous Systems (이 기종 체계 연동을 위한 객체 모델 변환 프레임워크 연구)

  • Lee, Kyu-Ho;Shim, Jun-Yong;Kim, Dae-Young
    • Proceedings of the Korea Information Processing Society Conference
    • /
    • 2011.04a
    • /
    • pp.1485-1488
    • /
    • 2011
  • 국방 분야의 시스템 개발은 다양한 데이터표준 및 프로토콜로 인해 체계 간 상호 연동에 어려움이 있다. 특히, 다양한 아키텍처가 적용되는 LVC 연동훈련 체계는 적용 프로토콜 간 데이터 교환을 위해서 공통의 표준기술이 필요하다. 본 논문은 이러한 이기종 체계들 간 상호 연동을 위해서 객체 모델 변환 프레임워크를 제시하였다. 제안 프레임워크는 다양한 이기종 체계가 가지는 객체 모델들과 프로토콜들을 구분하여 독립적으로 연동할 수 있도록 하였다. 또한, 체계 간의 종속성을 줄이고 구성 요소의 유연한 설계를 제공하기 위해서 3-Part 지원 모듈의 플러그인 방식 구조로 설계하였다.

The LVC Linkage for the Interoperability of the Battle Lab (Battle Lab에서의 상호운용성을 위한 LVC 연동방안)

  • Yun, Keun-Ho;Shim, Shin-Woo;Lee, Dong-Joon
    • Journal of the Korea Society for Simulation
    • /
    • v.21 no.1
    • /
    • pp.81-88
    • /
    • 2012
  • In the M&S filed, The Battle Lab is available for acquisition, design, development tool, validation test, and training in the weapon system of development process. Recently, the Battle Lab in the military of Korea is still in an early stage, in spite of importance of battle lab construction. In the environment of network centric warfare, a practical use of the M&S which is connecting live, virtual and constructive model can be applied to all field of System Engineering process. It is necessary thar the Battle Lab is not restricted by time and space, and is possible for the technical implementation. In this paper, to guarantee the interoperability of live and virtual simulation, virtual simulators connect live simulators by using the tactical data link. To guarantee the interoperability of virtual and constructive simulation, both virtual simulators and constructive simulators use the RTI which is the standard tool of M&S. We propose the System that constructed the Air Defence Battle Lab. In case of the approach of target tracks, The Air Defence Battle Lab is the system for the engagement based on a command of an upper system in the engagement weapon system. Constructive simulators which are target track, missile, radar, and launcher simulator connect virtual simulators which are MCRC, battalion, and fire control center simulators using the RPR-FOM 1.0 that is a kind of RTI FOM. The interoperability of virtual simulators and live simulators can be guaranteed by the connection of the tactical data links which are Link-11B and ATDL-1.