• Title/Summary/Keyword: LTE networks

Search Result 224, Processing Time 0.025 seconds

Core Technologies and Further Development Perspectives of LTE/LTE-Advanced (LTE/LTE-Advanced 핵심기술 및 발전전망)

  • Kim, Jeong-Ho
    • Journal of the Institute of Electronics Engineers of Korea TC
    • /
    • v.49 no.6
    • /
    • pp.8-14
    • /
    • 2012
  • In this paper the core technologies of LTE/LTE-Adv systems which may enable the accommodation of huge mobile traffic today are introduced and investigated in order to provide some insights for future boradband mobile services provisioning. One of the key requirements for realization of broadband mobile services is to improve the efficiency of frequency usage and also stable performance of the LTE networks is indispensible to future use. In this sense, key technological issues are summarized hereafter and the technological breakthroughs required for the optimized operation of the networks are briefly discussed.

An Efficient Scheme for TDD LTE ICS Exploiting the Reciprocity of the Feedback Channel in TDD LTE Networks (TDD LTE 네트워크에서 궤환 채널의 Reciprocity를 이용한 효율적인 TDD LTE ICS 구조 설계)

  • Kim, Hyunchae;Im, Sungbin
    • Journal of the Institute of Electronics and Information Engineers
    • /
    • v.53 no.2
    • /
    • pp.17-23
    • /
    • 2016
  • It is essential to develop an estimation and cancellation algorithm for feedback signals in designing the interference cancellation systems (ICS) as a solution to extending the coverage of the TDD LTE networks. Unlike the radio access of FDD LTE networks, TDD networks utilize the same frequency band in downlink and uplink for radio access. For this reason, downlink and uplink are repeated in time and thus the estimation of the feedback signals in uplink and downlink, respectively, is periodically paused to cause performance degradation. In this study, the reciprocity of downlink and uplink is examined through experiments and exploiting the same frequency band in uplink and downlink, an efficient channel estimation and elimination algorithm is proposed since the algorithm utilizes the same structure for both downlink and uplink.

Performance Analysis of Optimal Tracking Load Balance Scheme in Hierarchical LTE Networks (계층적 LTE 네트워크에서 최적의 트래킹 로드밸런스 기법의 성능분석)

  • Jeon, Minsu;Jeong, Jongpil
    • Journal of the Institute of Electronics and Information Engineers
    • /
    • v.50 no.6
    • /
    • pp.9-21
    • /
    • 2013
  • Tracking is a process which explores user equipment (UE) in the area of tracking in terms of cells. In this paper, two tracking schemes based on macrocell-microcell tiers in hierarchical LTE networks, PMMT and IMMT, are evaluated. In this network, UE can receive a signal from macrocells and overlapping microcells, and can be called from each macrocell or microcell-tier in the PMMT. Also, the UE can be called from the combined macrocell-tier and microcell-tier in the IMMT. Finally, we analyze the optimization of load balance between marcocell-tier and microcell-tier, and an analytical model is developed to evaluate those two arrangements.

Required Specification Analysis of CPRI Link of 4G Mobile Networks for Using WDM-PON Transmission (WDM-PON 전송을 이용한 4G 이동통신망 CPRI 링크의 시스템 요구규격 분석)

  • Kim, Sung-Man;Mun, Sil-Gu;Lee, Sang-Soo
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.37 no.7B
    • /
    • pp.499-504
    • /
    • 2012
  • Recently, base stations composed of digital unit (DU) and radio unit (RU) have been widely used in 4G mobile networks. To connect DU and RU, CPRI (common public radio interface) is usually used as the interface standard. This CPRI link is considered as one of the application markets for WDM-PON. In this paper, we analyzed the required specification of WDM-PON for the CPRI link of the 4G LTE-Advanced base station composed of DU and RU. This analysis is important to set a target goal of the development of WDM-PON system for 4G mobile networks.

Technical Trend and Improvement of Congestion Control for Machine-to-Machine Communications in 3GPP LTE-A Systems (3GPP LTE-A 시스템에서의 M2M 통신을 위한 혼잡 제어 기술 동향 및 개선 방안)

  • Kim, Jae-Hyun;Kim, Seog-Gyu
    • KIPS Transactions on Software and Data Engineering
    • /
    • v.3 no.11
    • /
    • pp.487-494
    • /
    • 2014
  • This paper focuses on an advanced congestion control scheme for M2M(Machine-to-Machine) communications in 3GPP LTE-A standard. A large number of MTC(Machine-type-Communication) devices try to access to LTE-A networks and send data to the networks all at once. In this characteristics, M2M communications will bring the serious network congestion problems into LTE-A cellular networks. To solve this critical problem, a congestion control mechanism will be required and it has been studied since Rel-10 LTE-A systems based on backoff mechanism for mobility management and session management. In this paper, we briefly introduce the main concept and operation about the congestion control scheme in 3GPP LTE-A standard. Also, simulation results for the basic congestion control and advanced congestion control scheme in MTC communication environment are provided and the improvement direction is considered in future 3GPP LTE-A standard.

An Authentication Scheme for Filtering Injected Bogus Data in Sensor Networks (센서 네트워크 내의 위조된 데이터 삽입 공격 방지를 위한 인증 방법)

  • Cho, Kwan-Tae;Kim, Young-Ho;Lee, Dong-Hoon
    • The KIPS Transactions:PartC
    • /
    • v.14C no.5
    • /
    • pp.389-394
    • /
    • 2007
  • Recently, a location-based threshold-endorsement(LTE) scheme is proposed to thwart bogus data injection attacks. The scheme exhibits much greater filtering power than earlier symmetric schemes and results in enhanced energy savings. In this paper, we show that LTE has fatal vulnerabilities. We also propose an improved scheme that mitigates the weakness and thereby achieves the original claims without lessening remarkable filtering power intended in LTE.

Analysis of Automatic Neighbor Relation Technology in Self Organization Networks of LTE (LTE 네트워크에서 SON ANR 기술 분석)

  • Ahn, Ho-Jun;Yang, Mo-Chan
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.14 no.5
    • /
    • pp.893-900
    • /
    • 2019
  • This paper deals with the analysis of SON (Self Organization Network) technology in LTE networks. SON is a unique LTE feature compared to previous cellular systems UMTS and GSM, and is a cost-effective tool for achieving the best performance in a changing environment. In addition, SON has the function of automating the settings of the network, enabling centralized planning and reducing the need for manual tasks. SON is largely divided into three categories: Self-Configuration, Self-Optimization, and Self-Healing. Each large category has a detailed description, and all the technologies in each category come together to complete the technology called SON. In this paper, we analyzed intensively about ANR among the techniques of Self-Configuration in each of the three categories.

Review on LTE-Advanced Mobile Technology

  • Seo, Dae-woong;Kim, Yoon-Hwan;Song, Jeong-Sang;Jang, Bongseog;Bae, Sang-Hyun
    • Journal of Integrative Natural Science
    • /
    • v.11 no.4
    • /
    • pp.197-203
    • /
    • 2018
  • Long Term Evolution-Advanced (LTE-A) is the next drive in the broadband mobile communication, which allows operators to improve networks performance and service capabilities. LTE-A targets the peak data rates of 1Gbps in the downlink and 500Mbps in the uplink. This requirement is only fulfilled by a transmission bandwidth of up to 100MHz. However the accessibility of such large part of the contiguous spectrum is uncommon in practice. Therefore LTE-A uses some new features on top of the existing LTE standards to provide very high data rate transmission. Some of the most significant features introduced in LTE-A are carrier aggregation, heterogeneous network enhancement, coordinated multipoint transmission and reception, enhanced multiple input and multiple output, and development relay nodes with universal frequency reuse. This review paper presents an overview of the above mentioned LTE-A key features and functionalities. Based on this review, in the conclusion we discuss the current technical challenges for future broadband mobile communication systems.

Optimized Relay Node Deployment and Resource Allocation in LTE-Advanced Relay Networks

  • Fenghe, Huang;Joe, In-Whee
    • Proceedings of the Korea Information Processing Society Conference
    • /
    • 2014.04a
    • /
    • pp.146-148
    • /
    • 2014
  • In LTE-Advanced (LTE-A) networks, Relay nodes (RN) are used to improve the system coverage. However, it also brings new kind of interference to users which reduces the system performance. In this paper, we use an optimization relay node deployment to reduce the interference as much as possible and resource allocation to improve the user throughput. Our simulation results show our method is able to improve the user SINR and throughput.

Impact of Power Control Optimization on the System Performance of Relay Based LTE-Advanced Heterogeneous Networks

  • Bulakci, Omer;Redana, Simone;Raaf, Bernhard;Hamalainen, Jyri
    • Journal of Communications and Networks
    • /
    • v.13 no.4
    • /
    • pp.345-359
    • /
    • 2011
  • Decode-and-forward relaying is a promising enhancement to existing radio access networks and is already standardized in 3rd generation partnership project (3GPP) as a part of long term evolution (LTE)-Advanced Release 10. Two inband operation modes of relay nodes are supported, namely type 1 and type lb. Relay nodes promise to offer considerable gain for system capacity or coverage, depending on the deployment prioritization, in a cost-efficient way. Yet, in order to fully exploit the benefits of relaying, the inter-cell interference which is increased due to the presence of relay nodes should be limited. Moreover, large differences in the received power levels from different users should be avoided. The goal is to keep the receiver dynamic range low in order to retain the orthogonality of the single carrier-frequency division multiple access system. In this paper, an evaluation of the relay based heterogeneous deployment within the LTE-Advanced uplink framework is carried out by applying the standardized LTE Release 8 power control scheme both at evolved node B and relay nodes. In order to enhance the overall system performance, different power control optimization strategies are proposed for 3GPP urban and suburban scenarios. A comparison between type 1 and type 1b relay nodes is as well presented to study the effect of the relaying overhead on the system performance in inband relay deployments. Comprehensive system level simulations show that the power control is a crucial means to increase the cell edge and system capacities, to mitigate inter-cell interference and to adjust the receiver dynamic range for both relay node types.