• Title/Summary/Keyword: LTCC material

Search Result 214, Processing Time 0.034 seconds

Fabrication of LTCC Tape and Its Microwave Dielectric Properties (LTCC Tape 제조 및 고주파 유전특성 평가)

  • Lee, Kyoung-Ho;Choi, Byung-Hoon;Ahn, Dal;Sung, Jung-Hyun
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2001.11b
    • /
    • pp.382-385
    • /
    • 2001
  • In the previous study, a new LTCC material in the $PbWO_{4}-TiO_{2}-B_{2}O_{3}-CuO$ system was introduced. The developed material can be sintered at $850^{\circ}C$ and its dielectric properties are $\varepsilon_{r}=20-25$, $Q{\times}f_{o}=30000\sim50000GHz$, and $\tau_{f}=0.2{\sim}30ppm/^{\circ}C$, respectively. Therefore this material can be used as a LTCC substrate material for fabrication of multilayered high frequency communication module set. In present study, using this material, tape casting condition was established. With this condition, a multilayered resonator was fabricated and its electrical properties were examined. In present study, an antenna-duplexer module was also fabricated. Frequency characteristics of as-fabricated antenna-duplexer module was compared with simulation results.

  • PDF

Fabrication of LTCC Tape and Its Microwave Dielectric Properties (LTCC Tape 제조 및 고추파 유전특성 평가)

  • Lee, Kyoung-Ho;Choi, Byung-Hoon;Ahn, Dal;Sung, Jung-Hyun
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2001.11a
    • /
    • pp.382-385
    • /
    • 2001
  • In the previous study, a new LTCC material in the PbWO$_4$-TiO$_2$-B$_2$O$_3$-CuO system was introduced. The developed material can be sintered at 850$^{\circ}C$ and its dielectric properties are $\varepsilon$$\sub$r/=20-25, Qxf$\sub$o/=30000∼500000Hz, and $\tau$$\sub$f/=0.2∼30ppm/$^{\circ}C$, respectively Therefore this material can be used as a LTCC substrate material for fabrication of multilayered high frequency communication module set. In present study, using this material, tape casting condition was established. With this condition, a multilayered resonator was fabricated and its electrical properties were examined. In present study, an antenna-duplexer module was also fabricated. Frequency characteristics of as-fabricated antenna-duplexer module was compared with simulation results.

  • PDF

Realization of gas sensor using LTCC(Low Temperature Cofired Ceramic) technology (LTCC 기술을 이용한 가스센서 구현)

  • Jeon, J.I.;Choi, H.J.;Lee, Y.B.;Kim, K.S.;Park, J.H.;Kim, M.Y.;Im, C.I.;Mun, J.D.
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2005.07a
    • /
    • pp.369-370
    • /
    • 2005
  • LTCC (Low Temperature Cofired Ceramic) technology is one of technologies which can realize SIP (System-In-a-Package). In this paper realization of gas sensor using LTCC technology was described. In the conventional gas sensor structure, wire bonding method is generally used as an interconnection method whereas in the LTCC sensor structure, via was used for the interconnection. As sensing materials, $SnO_2$ was adopted. The effect of frit glass portion on the adhesion of the sensing material to the LTCC substrate and the electrical conductivity of the sensing material were analyzed. AgPd, PdO, Pt was added to the sensing material as an additive for improving the gas sensitivity and electrical conductivity and the effect of the amount of additives in the sensing material on the electrical conductivity was investigated. The effect of the amount of frit glass in the termination on the sensor performance, especially mechanical integrity, was considered and the crack initiation and propagation in the boundary between the sensing material and the termination was studied.

  • PDF

Study on properties of CaO-MgO-$SiO_2$ system glass-ceramic for LTCC (CaO-MgO-$SiO_2$ 계 LTCC glass에 대한 특성 연구)

  • Chang, Myung-Whun;Ma, Won-Chul
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2008.06a
    • /
    • pp.322-322
    • /
    • 2008
  • Low-temperature co-fired ceramics (LTCC) have turned out to be very promising technology in accordance with the rapid developments in semiconductor technology. The demands for compact electrical assemblies, smaller power loss as well as high signal density can be fulfilled by LTCC. And for the multi-layered ceramic devices with embedded passive components such as high dielectric constant decoupling capacitor, LTCC materials require the several conditions to avoid delamination and internal cracks. For the present study, diopside-based glass is chosen as the LTCC substrate material in view of its high coefficient of thermal expansion (CTE). From the experimental resultsn the influence of each element on the CTE change can be revealed.

  • PDF

Evaluation and Optimization of Dispersion in Slurry Preparation of Commercial LTCC Material (상용 LTCC 소재의 슬러리 제조 공정에서 분산성 평가 및 최적화)

  • Kwon, Hyeok-Jung;Shin, Hyo-Soon;Yeo, Dong-Hun;Kim, Jong-Hee;Cho, Yong-Su
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.21 no.4
    • /
    • pp.341-347
    • /
    • 2008
  • Laminated LTCC components of high integrity, fabricated by thick film process, are applied to industrial field of IT technology along with miniaturization trend of electronic devices. Dispersion states were examined by several evaluation methods with MLS-22, which is one of commercial LTCC powders, to achieve optimal dispersion as basis for stable LTCC fabrication process. Slurry viscosity, surface roughness of dip-coated slide glass, sedimentaion of slurry, and SEM observation of dried surface were utilized with respective amount change of various commercial dispersants. Among these commercial dispersants, optimal dispersion state was obtained with 0.4 wt% of BYK-111, from the results of various evaluation methods.

Design of BPF for WLAN with Heterogeneous LTCC Materials (이종적층 LTCC 기술을 이용한 WLAN용 대역통과 필터 설계)

  • Ko, Jeong-Ho;Yook, Jong-Gwan;Park, Han-Kyu;Kim, Jun-Chul;Lee, Young-Shin
    • Proceedings of the Korea Electromagnetic Engineering Society Conference
    • /
    • 2003.11a
    • /
    • pp.188-192
    • /
    • 2003
  • A multilayer two-stage LC bandpass filter using low-temperature cofired-ceramic (LTCC) is proposed in this paper. The proposed bandpass filter is composed of two ceramic substrates with different dielectric constant instead of single ceramic material from top to bottom layer. The bandpass filter size is $2.0 mm{\times}1.2 mm{\times}0.8 mm$. Positioning of attenuation polefrequency, importance parameter for a performance of filter, is discussed using even-odd mode analysis by tuned capacitance of coupling capacitor and those results is implemented to LTCC filter circuit. Measured filter performances show that the insertion losses are -4.5dB, -4.1dB at 2.45GHz, 2.75GHz and the return losses are -8.5dB, 8.7dB.

  • PDF

Characterization of As-Developed LTCC Material Through The Fabrication of 2-Pole Band Pass Filter (적층형 2-Pole 대역통과 필터 제작을 통한 개발된 LTCC 조성의 특성 평가)

  • 이경호;최병훈;방재철
    • Proceedings of the International Microelectronics And Packaging Society Conference
    • /
    • 2002.05a
    • /
    • pp.134-137
    • /
    • 2002
  • A new LTCC material in the $PbWO_4-TiO_2-B_2O_3-CuO$ system was developed. The developed material can be sintered at $850^{\circ}C$ and its dielectric properties are $\varepsilon_r=20-25, Q\timesf_o=30000~50000GHz$ , and $\tau_f=0.2~30ppm/^{\circ}C$, depending on the components moi ratio. Due to its low sintering temperature and microwave dielectric properties, the developed material can be used as a LTCC substrate for fabrication of multilayered microwave communication module set. In present study, using this material, tape casting condition was established. With this processing condition, a T-resonator was fabricated and its electrical properties were examined. Also, a 2-Pole band pass filter was fabricated and its frequency characteristics were compared with simulation results.

  • PDF

Characterization of Embedded Thick Film Capacitor in LTCC Substrate (유전체 Paste를 이용한 LTCC 내장형 후막 Capacitor 제작 및 평가)

  • Cho, Hyun-Min;Yoo, Myung-Jae;Park, Sung-Dae;Lee, Woo-Sung;Kang, Nam-Kee
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2003.07b
    • /
    • pp.760-763
    • /
    • 2003
  • Low Temperature Cofired Ceramics (LTCC) technology is a promising technology to integrate many devices in a module by embedding passive components. For the module substrate, most LTCC structures have dielectric constants below 10 to reduce signal delay time. Some components, which need high dielectric constants, have not been yet embedded in LTCC module. So, embedding capacitor with high capacitance by applying another dielectrics with high dielectric constants in LTCC is an important issue to maximize circuit density in LTCC module. In this study, electrical properties of embedded capacitor fabricated by dielectric paste of high dielectric constants (K-100) and co-firing behavior with LTCC were investigated. To prevent camber development of co-fired structure, constrained sintering process was tested. Dielectric properties of embedded capacitors were calculated from their capacitance and impedance value. Temperature coefficient of capacitance were also measured.

  • PDF

Study of parameters of MEMS inductor on the LTCC substrate (LTCC 기판위에 MEMS 인덕터 특성 연구)

  • Park, Je-Yung;Cha, Doo-Yeol;Kim, Sung-Tae;Kang, Min-Suk;Yeo, Dong-Hun;Kim, Jong-Hei;Chang, Sung-Pil
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2007.06a
    • /
    • pp.258-258
    • /
    • 2007
  • 일반적인 CMOS공정으로는 높은 주파수 대역에서 높은 Q factor를 갖는 인덕터를 구현하는데 어렵고 이에 반해 RF ICs는 갈수록 high Q를 가지는 인덕터가 요구되고 있다. 이를 LTCC 기판 위에 인덕터를 구현했을 때 놓은 주파수 대역에서 성능을 알아보기 위해 모의 실험하였고, 실제로 구현을 하여 측정결과를 비교해 보았다. LTCC 기판위에 인덕터를 구현 하였을 때 실리콘, 유리 기판위에 인덕터를 구현하였을 때보다 더 높은 Q 값을 측정할 수 있었다. 5GHz 대역에서 실리콘, 유리, LTCC 기판에서 각각 12, 33, 51에 값을 확인할 수 있었다.

  • PDF

Slurry Rheology in LTCC Tape Casting (LTCC Tape casting에서 슬러리의 Rheology)

  • Park, Zee-Hoon;Shin, Hyo-Soon;Yeo, Dong-Hun;Park, Byung-Ok
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2007.06a
    • /
    • pp.43-43
    • /
    • 2007
  • LTCC는 최근의 이동 통신 환경의 급격한 발전 속에 그 응용 및 특성 요구가 증폭되고 있다. 이러한 LTCC 소재는 주로 테이프 캐스팅에 의한 후막 공정으로 제품이 만들어지게 되는데, 캐스팅을 위해 제조되는 슬러리는 일반적으로 유변학적 의사가소성 거동을 하는 것으로 알려져 있다. 그러나, 슬러리 제조 조건에 따라 유변학적 거동이 다르게 나타나는 것이 관찰되었다. 이에, 슬러리 제조 조건을 다양하게 변화시키며, 유변학적 거동을 살며 보고 이렇게 변화된 유변학적 거동과 캐스팅된 시트 특성과의 관계를 검토해 보려 한다. LTCC 재료의 주 구성 요소인 glass와 세라믹 분말의 초기 조건 및 각각의 rheology 특성과 혼합 슬러리에서의 관계성 등을 고찰하려 한다.

  • PDF