• Title/Summary/Keyword: LTCC (low-temperature co-fired ceramic)

Search Result 129, Processing Time 0.019 seconds

Evaluation of Punching Process Variables Influencing Micro Via-hole Quality of LTCC Green Sheet (LTCC 기판의 미세 비아홀 펀칭 중 공정 변수의 영향 평가)

  • Baek S. W.;Rhim S. H.;Oh S. I.
    • Transactions of Materials Processing
    • /
    • v.14 no.3 s.75
    • /
    • pp.277-281
    • /
    • 2005
  • LTCC(Low temperature co-fired ceramic) is being recognized as a significant packaging material of electrical devices for the advantages such as relatively low temperature being needed for process, low conductor resistance and high printing resolution. In the process of LTCC electrical devices, the punched via-hole quality is one of the most important factors on the performance of the device. However, its mechanism is very complicated and optimization of the process seems difficult. In this paper, to clarify the process, via-hole punching experiments were carried out and the punched holes were examined in terms of their burr formation. The effects of thickness of PET sheet, ceramic sheet and punch-to- die clearance on via-hole quality were also discussed. Optimum process conditions are proposed and a factor $\kappa$ is introduced to express effect of the process variables.

Influence of Laminating and Sintering Condition on Permittivity and Shrinkage During LTCC Process (LTCC 공정 중 적층 및 소결이 유전율과 회로 형상에 미치는 영향)

  • Jeong, M.S.;Hwang, S.H.;Chung, H.W.;Rhim, S.H.;Oh, S.I.
    • Transactions of Materials Processing
    • /
    • v.16 no.5 s.95
    • /
    • pp.396-400
    • /
    • 2007
  • LTCC(Low Temperature Co-fired Ceramic) which offers a good performance to produce multilayer structures with electronic circuits and components has emerged as an attractive technology in the electronic packaging industry. In LTCC module fabrication process, the lamination and the sintering are very important processes and affect the electrical characteristics of the final products because the processes change the permittivity of ceramics and the dimension of the circuit patterns which have influences on electronic properties. This paper discusses the influence of lamination pressure and sintering temperature on the permittivity and the dimensional change of LTCC products. In the present investigation, it is shown that the permittivity increases along with increasing of the lamination pressure and the sintering temperature.

Influence of laminating and sintering condition on permittivity and shrinkage during LTCC process (LTCC 공정 중 적층 및 소결이 유전율과 회로 형상에 미치는 영향)

  • Jeong, M.S.;Hwang, S.H.;Chung, H.W.;Rhim, H.S.;Oh, S.I.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2007.05a
    • /
    • pp.67-70
    • /
    • 2007
  • LTCC (Low Temperature Co-fired Ceramic) has been emerged as a promising technology in packaging industry. In this technology the lamination and the sintering process are very important because they change the permittivity of ceramics and the dimension of metal pattern which have influences on electric property. In this paper we studied on influence of the permittivity and the dimension change by lamination pressure and sintering temperature of LTCC process. As a results, permittivity increase along with increasing of lamination pressure and sintering temperature.

  • PDF

Microstrip Patch Array Antenna Using Low Temperature Co-Fired Ceramic Substrates for 60 GHz WP AN Applications (적층 세라믹 기판을 이용한 60 GHz WPAN총 2X4 배열 안테나)

  • Byun, Woo-Jin;Kim, Bong-Su;Kang, Min-Soo;Kim, Kwang-Seon;Kim, Jong-Myun;Song, Myung-Sun
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.19 no.12
    • /
    • pp.1402-1409
    • /
    • 2008
  • In this paper, a low temperature co-fired ceramic cavity backed antenna in order to improve the performances of radiation and bandwidth for the antenna with high relative dielectric constant is proposed. Low temperature co-fired ceramic cavity consisted of several ground planes with closely spaced metallic vias connected. It is shown that the size of a low temperature co-fired ceramic cavity has the effects on the performances of radiation and bandwidth for the antenna. The proposed 2x4 low temperature co-fired ceramic cavity backed antenna is $10{\times}20\;mm^2$ in size. Measured results show antenna gain of $11.8{\sim}14.1\;dBi$ and bandwidth of 13 %(7.9 GHz) in the $57{\sim}64\;GHz$ band.

A study on micro punching process of ceramic green sheet (세라믹 그린시트의 미세 비아홀 펀칭 공정 연구)

  • 신승용;주병윤;임성한;오수익
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2003.10a
    • /
    • pp.101-106
    • /
    • 2003
  • Recent electronic equipment becomes smaller, more functional, and more complex. According to these trends, LTCC(low temperature co-fired ceramic) has been emerged as a promising technology in packaging industry. It consists of multi-layer ceramic sheet, and the circuit has 3D structure. In this technology via hole formation plays an important role because it provides an electric path for the packaging interconnection network. Therefore via hole quality is very important for ensuring performance of LTCC product. Via holes are formed on the green sheet that consists of ceramic(before sintering) layer and PET(polyethylene Terephthalate) one. In this paper we found the correlation between hole quality and process condition such as ceramic thickness, and tool size. The shear behavior of double layer sheet by micro hole punching which is different from that of single layer one was also discussed.

  • PDF

Thickness Effect of Double Layered Sheet on Burr Formation during Micro-Via Hole Punching Process (미세 비아홀 펀칭 공정 중 이종 재료 두께에 따른 버 생성)

  • 신승용;임성한;주병윤;오수익
    • Transactions of Materials Processing
    • /
    • v.13 no.1
    • /
    • pp.65-71
    • /
    • 2004
  • Recent electronic equipment becomes smaller, more functional, and more complex. According to these trends, LTCC(low temperature co-fired ceramic) has been emerged as a promising technology in packaging industry. It consists of multi-layer ceramic sheet, and the circuit has 3D structure. In this technology via hole formation plays an important role because it provides an electric path for the packaging interconnection network. Therefore via hole qualify is very important for ensuring performance of LTCC product. Via holes are formed on the green sheet that consists of ceramic(before sintering) layer and PET(polyethylene terephthalate) one. In this paper we found the correlation between hole quality and process condition such as PET thickness and ceramic thickness. The shear behavior of double layer sheet by micro hole punching which is different from that of single layer one was also discussed.

Influence of WIP conditions on dimensional change of LTCC sheet (온간 정수압 공정 조건에 따른 LTCC sheet의 수축률)

  • Jeong, M.S.;Yoon, Y.H.;Rhim, S.H.;Yoon, S.M.;Oh, S.I.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2008.05a
    • /
    • pp.507-511
    • /
    • 2008
  • LTCC (Low Temperature Co-fired Ceramic) has been successfully applied to ceramic substrates for circuits and micro-fluidic systems and has proven its superior performance in a variety of applications. The prediction of shrinkage in LTCC process is an important for dimensional control of micro LTCC products which has influences on electronic characteristics. For avoiding the unpredictable shrinkage of LTCC during the sintering which makes accurate placement of the circuit devices difficult, pre-processes such as WIP (Warm Isostatic Pressing) and lamination must be modified. The objective of the present investigation is to establish a proper WIP conditions for near net shape fabrication of LTCC products. This paper discusses the influence of WIP conditions on the dimensional change of LTCC sheet. In the investigation, it is shown that the shrinkage values of sheets depend on WIP conditions and sheet directions. This work is a quantitative evaluation of the effect of WIP pressure on shrinkage of LTCC sheet. Additionally, the results show anisotropic shrinkage behaviour of sheet during LTCC process.

  • PDF

Implementation of LTCC Triplexer Band Based on Conjugate Matching Method (복소 매칭 방법을 이용한 LTCC Triplexer 구현)

  • Ha, Sang-Hoon;Kim, Hyeong-Seok
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.56 no.7
    • /
    • pp.1288-1293
    • /
    • 2007
  • In this paper, a compact triplexer has been implemented for Cellular/GPS/USPCS applications. In order to realize the proposed triplexer, we use a low-temperature co-fired ceramic (LTCC) substrate to enable a fully compact integrated module using a multi-layer high-density architecture, and conjugate-match the channels instead of the open matching technique. The three dimensional design capability of LTCC substrates can reduce the overall size of the triplexer, resulting in dimensions on the order of $3.2\;mm\;{\times}\;2.5\;mm\;{\times}\;1\;mm$. The measured result shows that the triplexer has, in Cellular/GPS/USPCS bands, the insertion loss of less than 0.5dB, less than 1.7dB, and less than 0.9dB in order. Also, the triplexer has an isolation of more than 15dB in the cellular and USPCS bands and an isolation of more than 20dB in the GPS band.

Design of LTCC(Low Temperature Co-fired Ceramic) Bandpass Filter to Improve Characteristic of Rejection Band (저지대역 특성을 개선한 LTCC 대역 통과 여파기 설계)

  • Kim, Young-Ju;Park, Jun-Seok;Lim, Jae-Bong;Cho, Hong-Goo
    • Proceedings of the Korea Electromagnetic Engineering Society Conference
    • /
    • 2003.11a
    • /
    • pp.256-259
    • /
    • 2003
  • In this paper, a design of multi-layered BPF(bandpass filter) using LTCC(Low Temperature Co-fired Ceramic) process by a lumped-elements is proposed for SOP(system-on-a-chip) of wireless communication systems. The proposed BPF improved a characteristic of rejection band to build an attenuation pole caused by structurally adjacent co-inductance and coupling. The simulation data shows a bandwidth of 90MHz from a center frequency of 2.4GHz, a return loss of 27dB, an insertion loss of 3.2dB, and an attenuation of at least 20dBc at $f_0{\pm}250MHz$. Simulations have used serenade circuit simulation and HFSS EM simulation.

  • PDF