DOI QR코드

DOI QR Code

Microstrip Patch Array Antenna Using Low Temperature Co-Fired Ceramic Substrates for 60 GHz WP AN Applications

적층 세라믹 기판을 이용한 60 GHz WPAN총 2X4 배열 안테나

  • Byun, Woo-Jin (Radio Technology Research Department, Electronics and Telecommunications Research Institute) ;
  • Kim, Bong-Su (Radio Technology Research Department, Electronics and Telecommunications Research Institute) ;
  • Kang, Min-Soo (Radio Technology Research Department, Electronics and Telecommunications Research Institute) ;
  • Kim, Kwang-Seon (Radio Technology Research Department, Electronics and Telecommunications Research Institute) ;
  • Kim, Jong-Myun (Radio Technology Research Department, Electronics and Telecommunications Research Institute) ;
  • Song, Myung-Sun (Radio Technology Research Department, Electronics and Telecommunications Research Institute)
  • 변우진 (한국전자통신연구원 전파기술연구부) ;
  • 김봉수 (한국전자통신연구원 전파기술연구부) ;
  • 강민수 (한국전자통신연구원 전파기술연구부) ;
  • 김광선 (한국전자통신연구원 전파기술연구부) ;
  • 김종면 (한국전자통신연구원 전파기술연구부) ;
  • 송명선 (한국전자통신연구원 전파기술연구부)
  • Published : 2008.12.31

Abstract

In this paper, a low temperature co-fired ceramic cavity backed antenna in order to improve the performances of radiation and bandwidth for the antenna with high relative dielectric constant is proposed. Low temperature co-fired ceramic cavity consisted of several ground planes with closely spaced metallic vias connected. It is shown that the size of a low temperature co-fired ceramic cavity has the effects on the performances of radiation and bandwidth for the antenna. The proposed 2x4 low temperature co-fired ceramic cavity backed antenna is $10{\times}20\;mm^2$ in size. Measured results show antenna gain of $11.8{\sim}14.1\;dBi$ and bandwidth of 13 %(7.9 GHz) in the $57{\sim}64\;GHz$ band.

본 논문에서는 상대 유전율이 큰 low temperature co-fired ceramic 기판을 이용한 안테나의 복사 성능을 높이고, 대역폭을 개선하기 위하여 low temperature co-fired ceramic cavity backed 안테나가 제안된다. Low temperature co-fired ceramic cavity는 각 층의 접지면을 다수의 비어로 연결하여 만들어진다. 그리고, cavity의 크기가 안테나의 복사 성능과 대역폭 성능에 미치는 영향을 보여준다. 제안된 $2{\times}4$ low temperature co-fired ceramic cavity backed 안테나의 크기는 $10{\times}20\;mm^2$이며, $57{\sim}64\;GHz$ 대역에서 이득 $11.8{\sim}14.1\;dBi$, 대역폭 13 %(7.9 GHz)을 가진다. 측정 결과는 시뮬레이션 결과와 매우 잘 일치함을 보여준다.

Keywords

References

  1. Su Khiong Yong, Chia-Chin Chong, 'An overview of multigigabit wireless through millimeterwave technology: Potentials and technical challenges', EURASIP Journal on Wireless Communications and Networking, article ID 78907, 2007
  2. IEEE Std. P802.15.3c/DF1, 'Wireless Medium Access Control(MAC) and Physical Layer(PHY) specifications for high rate Wireless Personal Area Networks(WPANs): Amendment 2: Millimeter-wave based alternative physical layer extension', IEEE, 2008
  3. F. Xu, K. Wu, 'Guided-wave and leakage characteristics of substrate integrated waveguide', IEEE Trans. Microw. Theory Tech., vol. 53, Issue 1, pp. 66-73, Jan. 2005 https://doi.org/10.1109/TMTT.2004.839303
  4. C. H. Lee, A. Sutono, S. Han, K. Lim, S. Pinel, J. Laskar, and E. M. Tentzeris, 'A compact LTCC-base Ku-band transmitter module', IEEE Trans. Adv. Packaging, vol. 25, no. 3, pp. 374-384, Aug. 2002 https://doi.org/10.1109/TADVP.2002.805315
  5. Y. Lee, W. Chang, and C. Park, 'Monolithic LTCC SiP transmitter for 60 GHz wireless communication terminals', in IEEE MTT-S Microwave Symposium Digest, Jun. 2005
  6. W. Byun, B. -S. Kim, K. -S. Kim, K. -C. Eun, M. -S. Song, R. Kulke, O. Kersten, G. Mollenbeck, and M. Rittweger, 'Design of vertical transition for 40 GHz transceiver module using LTCC technology', in 37th Eur. Microw. Conf., pp. 1353-1356, Oct. 2007
  7. M. A. Gonzalez de Aza, J. Zapata, 'Broad-band cavity-backed and capacitively probe-fed microstrip patch arrays', IEEE Trans. Ant. Prop., vol. 48, no. 5, pp. 784-789, May 2000 https://doi.org/10.1109/8.855498
  8. R. Gonzalo, P. de. Maagt, and M. Sorolla, 'Enhanced patch antenna performance by suppressing surface waves using photonic bandgap substrates', IEEE Trans. Microwave Theory Tech., vol. 47, no. 11, pp. 2131-2138, Nov. 1999 https://doi.org/10.1109/22.798009
  9. R. Coccioli, F. -R. Yang, K. -P. Ma, and T. Itoh, 'Aperture-coupled patch antenna on UC-PBG substrate', IEEE Trans. Microwave Theory Tech., vol. 47, no. 11, pp. 2123-2130, Nov. 1999 https://doi.org/10.1109/22.798008
  10. J. H. Lee, N. Kidera, S. Pinel, J. Laskar, and M. M. Tentzeris, '60 GHz high-gain aperture-coupled microstrip antennas using soft-surface and stacked cavity on LTCC multilayer technology', IEEE Antennas and Propagation Society Symposium, NM, pp. 1621-1624, 2006
  11. D. M. Pozar, 'Rigorous closed form expressions for the surface wave loss of printed antennas', Electonic Letters, vol. 26, no. 13, pp. 954-956, Jun. 1990 https://doi.org/10.1049/el:19900622
  12. I. J. Bahl, P. Bhartia, Microstrip Antenna, Artech House, 1980