• 제목/요약/키워드: LT-WGS

검색결과 3건 처리시간 0.017초

저온 수성가스 전이 반응용 Cu-Zn-Al 촉매의 숙성시간 최적화 (An Optimization of Aging Time for Low-Temperature Water-Gas Shift Over Cu-Zn-Al Catalyst)

  • 심재오;나현석;안선용;장원준;노현석
    • 한국수소및신에너지학회논문집
    • /
    • 제30권2호
    • /
    • pp.103-110
    • /
    • 2019
  • Cu-Zn-Al catalysts were prepared via co-precipitation method for low-temperature water-gas shift (LT-WGS) reaction under practical reaction condition. Aging time was systematically changed to find optimum point for LT-WGS under practical condition. The Cu-Zn-Al catalyst aged for 72 hours showed the highest CO conversion within low-temperature range as well as very stable catalytic activity for 200 hours despite the practical reaction condition.

LT-WGS 반응을 위한 Cu/ZnO/MgO/Al2O3 촉매의 수분처리에 의한 촉매 특성 분석 (Catalytic Characteristic of Water-Treated Cu/ZnO/MgO/Al2O3 Catalyst for LT-WGS Reaction)

  • 박지혜;백정훈;조광희;;이광복
    • 한국수소및신에너지학회논문집
    • /
    • 제30권2호
    • /
    • pp.95-102
    • /
    • 2019
  • In order to investigate the effect of water treatment on activity of WGS catalyst, $Cu/ZnO/MgO/Al_2O_3$ (CZMA) catalysts were synthesized by co-precipitation method. The prepared catalysts were water-treated at two different temperature (250, $350^{\circ}C$). Synthesized catalysts were characterized by using BET, SEM, $N_2O$ chemisorption, XRD, $H_2-TPR$ and XPS analysis. The catalytic activity tests were carried out at a GHSV of $28,000h^{-1}$ and a temperature range of $180-320^{\circ}C$. The reduction temperature decreased with water treatment and CZMA_250 catalyst showed the lowest reduction temperature and retained a large amount of $Cu^+$. Water-treated catalysts showed increased reactivity compared to untreated catalyst and the CZMA_250 catalyst showed higher catalytic activity on WGS reaction.

Effects of Mg Addition to Cu/Al2O3 Catalyst for Low-Temperature Water Gas Shift (LT-WGS) Reaction

  • Zakia Akter Sonia;Ji Hye Park;Wathone Oo;Kwang Bok Yi
    • 청정기술
    • /
    • 제29권1호
    • /
    • pp.39-45
    • /
    • 2023
  • To investigate the effects of Mg addition at different aging times and temperatures, Cu/MgO/Al2O3 catalysts were synthesized for the low-temperature water gas shift (LT-WGS) reaction. The co-precipitation method was employed to prepare the catalysts with a fixed Cu amount of 30 mol% and varied amounts of Mg/Al. Synthesized catalysts were characterized using XRD, BET, and H2-TPR analysis. Among the prepared catalysts, the highest CO conversion was achieved by the Cu/MgO/Al2O3 catalyst (30/40/30 mol%) with a 60 ℃ aging temperature and a 24 h aging time under a CO2-rich feed gas. Due to it having the lowest reduction temperature and a good dispersion of CuO, the catalyst exhibited around 65% CO conversion with a gas hourly space velocity (GHSV) of 14,089 h-1 at 300 ℃. However, it has been noted that aging temperatures greater or less than 60 ℃ and aging times longer than 24 h had an adverse impact, resulting in a lower surface area and a higher reduction temperature bulk-CuO phase, leading to lower catalytic activity. The main findings of this study confirmed that one of the main factors determining catalytic activity is the ease of reducibility in the absence of bulk-like CuO species. Finally, the long-term test revealed that the catalytic activity and stability remained constant under a high concentration of CO2 in the feed gas for 19 h with an average CO conversion of 61.83%.