Browse > Article
http://dx.doi.org/10.7316/KHNES.2019.30.2.95

Catalytic Characteristic of Water-Treated Cu/ZnO/MgO/Al2O3 Catalyst for LT-WGS Reaction  

PARK, JIHYE (Graduate School of Energy Science and Technology, Chungnam National University)
BAEK, JEONG HUN (Korea Institute of Energy Research)
JO, GWANG HUI (Graduate School of Energy Science and Technology, Chungnam National University)
RASHEED, HAROON UR (Graduate School of Energy Science and Technology, Chungnam National University)
YI, KWANG BOK (Department of Chemical Engineering Education, Chungnam National University)
Publication Information
Transactions of the Korean hydrogen and new energy society / v.30, no.2, 2019 , pp. 95-102 More about this Journal
Abstract
In order to investigate the effect of water treatment on activity of WGS catalyst, $Cu/ZnO/MgO/Al_2O_3$ (CZMA) catalysts were synthesized by co-precipitation method. The prepared catalysts were water-treated at two different temperature (250, $350^{\circ}C$). Synthesized catalysts were characterized by using BET, SEM, $N_2O$ chemisorption, XRD, $H_2-TPR$ and XPS analysis. The catalytic activity tests were carried out at a GHSV of $28,000h^{-1}$ and a temperature range of $180-320^{\circ}C$. The reduction temperature decreased with water treatment and CZMA_250 catalyst showed the lowest reduction temperature and retained a large amount of $Cu^+$. Water-treated catalysts showed increased reactivity compared to untreated catalyst and the CZMA_250 catalyst showed higher catalytic activity on WGS reaction.
Keywords
Water gas shift; $Cu/ZnO/MgO/Al_2O_3$ catalyst; Water treatment; Co-precipitation; Copper;
Citations & Related Records
Times Cited By KSCI : 1  (Citation Analysis)
연도 인용수 순위
1 N. K. Park and T. J. Lee, "Control of surface area and activity with changing precipitation rate in preparation of Cu-Zn based catalysts for dimethyl ether direct synthesis", Korean J. Chem. Eng., Vol. 28, No. 10, 2011, pp. 2076-2080, doi: https://doi.org/10.1007/s11814-011-0061-1.   DOI
2 X. Wang, R. J. Gorte, and J. Wagner, "Deactivation Mechanisms for Pd/Ceria during the Water-Gas-Shift Reaction", J. Catal., Vol. 212, No. 2, 2002, pp. 225-230, doi: https://doi.org/10.1006/jcat.2002.3789.   DOI
3 M. V. Twigg and M. S. Spencer, "Deactivation of Supported Copper Metal Catalysts for Hydrogenation Reactions", Appl. Catal., A., Vol. 12, No. 1-2, 2001, pp. 161-174, doi: https://doi.org/10.1016/S0926-860X(00)00854-1.
4 J. H. Park, J. H. Baek, R. H. Hwang, and K. B. Yi, "Enhanced Catalytic Activity of Cu/ZnO/$Al_2O_3$ Catalyst by Mg Addition for Water Gas Shift Reaction", Clean Technol., Vol. 23, No. 4, 2017, pp. 429-434, doi: https://doi.org/10.7464/ksct.2017.23.4.429.   DOI
5 M. Mikkelsen, M. Jorgensen, and F. C. Krebs, "The teraton challenge. A review of fixation and transformation of carbon dioxide", Energy Environ. Sci., Vol. 3, No. 1, 2010, pp. 43-81, doi: https://doi.org/10.1039/B912904A.   DOI
6 S. Kuhl, A. Tarasov, S. Zander, I. Kasatkin, and M. Behrens, "Cu-Based Catalyst Resulting from a Cu, Zn, Al Hydrotalcite - Like Compound: A Microstructural, Thermoanalytical, and In Situ XAS Study", Chem. Eur. J., Vol. 20, No. 13, 2014, pp. 3782-3792, doi: https://doi.org/10.1002/chem.201302599.   DOI
7 P. Kumar and R. Idem, "A Comparative Study of Copper-Promoted Water-Gas-Shift (WGS) Catalysts", Energy Fuels, Vol. 21, No. 2, 2007, pp. 522-529, doi: https://doi.org/10.1021/ef060389x.   DOI
8 I. Kasatkin, P. Kurr, B. Kniep, A. Trunschke, and R. Schlogl, "Role of lattice strain and defects in copper particles on the activity of Cu/ZnO/$Al_2O_3$ catalysts for methanol synthesis", Angew. Chem. Int. Edit., Vol. 46, No. 38, 2007, pp. 7324-7327, doi: https://doi.org/10.1002/anie.200702600.   DOI
9 X. Lin, Y. Zhang, L. Yin, C. Chen, Y. Zhan, and D. Li, "Characterization and catalytic performance of copper-based WGS catalysts derived from copper ferrite", Int. J. Hydrogen Energy, Vol. 39, No. 12, 2014, pp. 6424-6432, doi: https://doi.org/10.1016/j.ijhydene.2014.02.018.   DOI
10 B. Lindstrom, L. J. Pettersson, and P. G. Menon, "Activity and Characterization of Cu/Zn, Cu/Cr and Cu/Zr on ${\gamma}$-alumina for Methanol Reforming for Fuel Cell Vehicles", Appl. Catal., A., Vol. 234, No. 1-2, 2002, pp. 111-125, doi: https://doi.org/10.1016/S0926-860X(02)00202-8.   DOI
11 T. L. Reitz, P. L. Lee, K. F. Czaplewski, J. C. Lang, K. E. Popp, and H. H. Kung, "Time-Resolved XANES Investigation of CuO/ZnO in the Oxidative Methanol Reforming Reaction", J. Catal., Vol. 199, No. 2, 2001, pp. 193-201, doi: https://doi.org/10.1006/jcat.2000.3141.   DOI
12 A. A. G. Lima, M. Nele, E. L. Moreno, and H. M. C. Andrade, "Composition Effects on the Activity of Cu-ZnO-$Al_2O_3$ Based Catalysts for the Water Gas Shift Reaction: A Statistical Approach", Appl. Catal., A., Vol. 171, No. 1, 1998, pp. 31-43, doi: https://doi.org/10.1016/S0926-860X(98)00072-6.   DOI
13 F. S. Stone and D. Waller, "Cu-ZnO and Cu-ZnO/$Al_2O_3$ Catalysts for the Reverse Water-Gas Shift Reaction. The Effect of the Cu/Zn Ratio on Precursor Characteristics and on the Activity of the Derived Catalysts", Top. Catal., Vol. 22, No. 3-4, 2003, pp. 305-318, doi: https://doi.org/10.1023/A:1023592407825.   DOI
14 J. H. Park, H. B. Im, R. H. Hwang, J. H. Baek, K. Y. Koo, and K. B. Yi, "Effect of Ce Addition on Catalytic Activity of Cu/Mn Catalysts for Water", Trans. of the Korean Hydrogend and New Energy Society, Vol. 28, No. 1, 2017, pp. 1-8, doi: https://doi.org/10.7316/KHNES.2017.28.1.1.   DOI
15 C. Rhodes, G. J. Hutchings, and A. M. Ward, "Water-gas Shift Reaction: Finding the Mechanistic Boundary", Catal. Today, Vol. 23, No. 1, 1995, pp. 43-58, doi: https://doi.org/10.1016/0920-5861(94)00135-O.   DOI
16 C. K. Byun, H. B. Im, J. Park, J. Baek, J. Jeong, W. R. Yoon, and K. B. Yi, "Enhanced Catalytic Activity of Cu/Zn Catalyst by Ce Addition for Low Temperature Water Gas Shift Reaction", Clean Technol., Vol. 21, No. 3, 2015, pp. 200-206, doi: https://doi.org/10.7464/ksct.2015.21.3.200.   DOI
17 B. S. R J, M. Loganathan, and M. S. Shantha, "A Review of the Water Gas Shift Reaction Kinetics", Int. J. Chem. React. Eng., Vol. 8, No. 1, 2010, doi: https://doi.org/10.2202/1542-6580.2238.
18 J. H. Baek, J. M. Jeong, J. H. Park, K. B. Yi, and Y. W. Rhee, "Effect of Al Precursor Addition Time on Catalytic Characteristic of Cu/ZnO/$Al_2O_3$ Catalyst for Water Gas Shift Reaction", Trans. of the Korean Hydrogen and New Energy Society, Vol. 26, No. 5, 2015, pp. 423-430, doi: https://doi.org/10.7316/KHNES.2015.26.5.423.   DOI
19 P. Kowalik, M. Konkol, K. Antoniak, W. Prochniak, and P. Wiercioch, "The effect of the precursor ageing on properties of the Cu/ZnO/$Al_2O_3$ catalyst for low temperature water-gas shift (LT-WGS)", J. Mol. Catal. A: Chem., Vol. 392, 2014, pp. 127-133, doi: https://doi.org/10.1016/j.molcata.2014.05.003.   DOI
20 R. T. Figueiredo, H. M. C. Andrade, and J. L. Fierro, "Influence of the preparation methods and redox properties of Cu/ZnO/$Al_2O_3$ catalysts for the water gas shift reaction", J. Mol. Catal. A: Chem., Vol. 318, No. 1-2, 2010, pp. 15-20, doi: https://doi.org/10.1016/j.molcata.2009.10.028.   DOI