• 제목/요약/키워드: LSTM (Long Short Term Memory) RNN (Recurrent Neural Networks)

검색결과 36건 처리시간 0.035초

Tensorflow를 이용한 도림천 수위 예측 (Prediction of DorimRiver Water Level Using Tensorflow)

  • 육지문;이정환;정민수;문현태;문영일
    • 한국수자원학회:학술대회논문집
    • /
    • 한국수자원학회 2019년도 학술발표회
    • /
    • pp.188-188
    • /
    • 2019
  • 본 연구에서는 텐서플로우를 이용한 관측자료 기반의 수위예측 연구를 수행하였다. 대상유역은 도림천 유역으로 선정하였으며 관측강우와 상류하천의 수위자료를 이용하여 하류인 도림교지점의 수위를 예측하였으며 다른 변수는 배제하였다. 사용된 모형은 시계열 데이터예측에 우수한 성능을 보이는 RNN(Recurrent Neural Network)과 LSTM(Long Short Term Memory networks)을 이용하였으며 수위자료는 2005년부터 2016년도 10분단위 관측강우와 수위 데이터를 학습하여 2017년도 수위데이터를 예측하도록 하였다. 본 연구를 통하여 홍수기 실시간 수위예측이 가능할것으로 판단되며 도시지역 골든타임 확보에 활용될 것으로 판단된다.

  • PDF

Lorenz 시스템의 역학 모델과 자료기반 인공지능 모델의 특성 비교 (Comparison of the Characteristics between the Dynamical Model and the Artificial Intelligence Model of the Lorenz System)

  • 김영호;임나경;김민우;정재희;정은서
    • 한국해양학회지:바다
    • /
    • 제28권4호
    • /
    • pp.133-142
    • /
    • 2023
  • 이 논문에서는 RNN (Recurrent Neural Networks)-LSTM (Long Short-Term Memory) 을 적용하여 Lorenz 시스템을 예측하는 자료 기반 인공지능 모델을 구축하고, 이 모델이 미분방정식을 차분화하여 해를 구하는 역학 모델을 대체할 수 있는지 가능성을 진단하였다. 구축된 자료기반 모델이 초기 조건의 작은 교란이 근본적으로 다른 결과를 만들어내는 Lorenz 시스템의 카오스적인 특성을 반영한다는 것과, 시스템의 안정적인 두 개의 닻을 중심으로 운동하면서 전이 과정을 반복하는 특성, "결정론적 불규칙 흐름"의 특성, 분기 현상을 모사한다는 것을 확인하였다. 또한, 적분 시간 간격을 조절함으로써 전산자원을 절감할 수 있는 자료기반 모델의 장점을 보였다. 향후 자료기반 모델의 정교화와 자료기반 모델을 위한 자료동화 기법의 연구를 통해 자료기반 인공지능 모델의 활용성을 확대할 수 있을 것으로 기대한다.

단어그룹 확장 기법을 활용한 순환신경망 알고리즘 성능개선 연구 (A Study on Performance Improvement of Recurrent Neural Networks Algorithm using Word Group Expansion Technique)

  • 박대승;성열우;김정길
    • 산업융합연구
    • /
    • 제20권4호
    • /
    • pp.23-30
    • /
    • 2022
  • 최근 인공지능(AI)과 딥러닝 발전으로 대화형 인공지능 챗봇의 중요성이 부각되고 있으며 다양한 분야에서 연구가 진행되고 있다. 챗봇을 만들기 위해서 직접 개발해 사용하기도 하지만 개발의 용이성을 위해 오픈소스 플랫폼이나 상업용 플랫폼을 활용하여 개발한다. 이러한 챗봇 플랫폼은 주로 RNN (Recurrent Neural Network)과 응용 알고리즘을 사용하며, 빠른 학습속도와 모니터링 및 검증의 용이성 그리고 좋은 추론 성능의 장점을 가지고 있다. 본 논문에서는 RNN과 응용 알고리즘의 추론 성능 향상방법을 연구하였다. 제안 방법은 RNN과 응용 알고리즘 적용 시 각 문장에 대한 핵심단어의 단어그룹에 대해 확장학습을 통해 데이터에 내재된 의미를 넓히는 기법을 사용하였다. 본 연구의 결과는 순환 구조를 갖는 RNN, GRU (Gated Recurrent Unit), LSTM (Long-short Term Memory) 세 알고리즘에서 최소 0.37%에서 최대 1.25% 추론 성능향상을 달성하였다. 본 연구를 통해 얻은 연구결과는 관련 산업에서 인공지능 챗봇 도입을 가속하고 다양한 RNN 응용 알고리즘을 활용하도록 하는데 기여할 수 있다. 향후 연구에서는 다양한 활성 함수들이 인공신경망 알고리즘의 성능 향상에 미치는 영향에 관한 연구가 필요할 것이다.

선박 연료 공급 기기류의 장시간 운전 데이터의 고장 진단에 있어서 XGBoost 및 Conv1D의 예측 정확성 비교 (Comparison of Fault Diagnosis Accuracy Between XGBoost and Conv1D Using Long-Term Operation Data of Ship Fuel Supply Instruments)

  • 김형진;김광식;황세윤;이장현
    • 한국항해항만학회:학술대회논문집
    • /
    • 한국항해항만학회 2022년도 춘계학술대회
    • /
    • pp.110-110
    • /
    • 2022
  • 본 연구는 자율운항 선박의 원격 고장 진단 기법 개발의 일부로 수행되었다. 특히, 엔진 연료 계통 장비로부터 계측된 시계열 데이터로부터 상태 진단을 위한 알고리즘 구현 결과를 제시하였다. 엔진 연료 펌프와 청정기를 가진 육상 실험 장비로부터 진동 시계열 데이터 계측하였으며, 이상 감지, 고장 분류 및 고장 예측이 가능한 심층 학습(Deep Learning) 및 기계 학습(Machine Learning) 알고리즘을 구현하였다. 육상 실험 장비에 고장 유형 별로 인위적인 고장을 발생시켜 특징적인 진동 신호를 계측하여, 인공 지능 학습에 이용하였다. 계측된 신호 데이터는 선행 발생한 사건의 신호가 후행 사건에 영향을 미치는 특성을 가지고 있으므로, 시계열에 내포된 고장 상태는 시간 간의 선후 종속성을 반영할 수 있는 학습 알고리즘을 제시하였다. 고장 사건의 시간 종속성을 반영할 수 있도록 순환(Recurrent) 계열의 RNN(Recurrent Neural Networks), LSTM(Long Short-Term Memory models)의 모델과 합성곱 연산 (Convolution Neural Network)을 기반으로 하는 Conv1D 모델을 적용하여 예측 정확성을 비교하였다. 특히, 합성곱 계열의 RNN LSTM 모델이 고차원의 순차적 자연어 언어 처리에 장점을 보이는 모델임을 착안하여, 신호의 시간 종속성을 학습에 반영할 수 있는 합성곱 계열의 Conv1 알고리즘을 고장 예측에 사용하였다. 또한 기계 학습 모델의 효율성을 감안하여 XGBoost를 추가로 적용하여 고장 예측을 시도하였다. 최종적으로 연료 펌프와 청정기의 진동 신호로부터 Conv1D 모델과 XGBoost 모델의 고장 예측 성능 결과를 비교하였다

  • PDF

어텐션 알고리듬 기반 양방향성 LSTM을 이용한 동영상의 압축 표준 예측 (Video Compression Standard Prediction using Attention-based Bidirectional LSTM)

  • 김상민;박범준;정제창
    • 방송공학회논문지
    • /
    • 제24권5호
    • /
    • pp.870-878
    • /
    • 2019
  • 본 논문에서는 어텐션 알고리듬 (attention algorithm) 기반의 양방향성 LSTM (bidirectional long short-term memory; BLSTM) 을 동영상의 압축 표준을 예측하기 위해 사용한다. 자연어 처리 (natural language processing; NLP) 분야에서 순환적 신경망 (recurrent neural networks; RNN) 의 구조를 이용하여 문장의 다음 단어를 예측하거나 의미에 따라 문장을 분류하거나 번역하는 연구들은 계속되어왔고, 이는 챗봇, 음성인식 스피커, 번역 애플리케이션 등으로 상용화되었다. LSTM 은 RNN에서 gradient vanishing problem 을 해결하고자 고안됐고, NLP 분야에서 유용하게 사용되고 있다. 제안한 알고리듬은 BLSTM과 특정 단어에 집중하여 분류할 수 있는 어텐션 알고리듬을 자연어 문장이 아닌 동영상의 비트스트림에 적용해 동영상의 압축 표준을 예측하는 것이 가능하다.

자질 보강과 양방향 LSTM-CNN-CRF 기반의 한국어 개체명 인식 모델 (Bi-directional LSTM-CNN-CRF for Korean Named Entity Recognition System with Feature Augmentation)

  • 이동엽;유원희;임희석
    • 한국융합학회논문지
    • /
    • 제8권12호
    • /
    • pp.55-62
    • /
    • 2017
  • 개체명 인식(Named Entity Recognition) 시스템은 문서에서 인명(PS), 지명(LC), 단체명(OG)과 같은 개체명을 가지는 단어나 어구를 해당 개체명으로 인식하는 시스템이다. 개체명 인식을 하기위한 전통적인 연구방법으로는 hand-craft된 자질(feature)을 기반으로 모델을 학습하는 통계 기반의 모델이 있다. 최근에는 딥러닝 기반의 RNN(Recurrent Neural Networks), LSTM(Long-short Term Memory)과 같은 모델을 이용하여 문장을 표현하는 자질을 구성하고 이를 개체명 인식과 같이 순서 라벨링(sequence labeling) 문제 해결에 이용한 연구가 제안되었다. 본 연구에서는 한국어 개체명 인식 시스템의 성능 향상을 위해, end-to-end learning 방식이 가능한 딥러닝 기반의 모델에 미리 구축되어 있는 hand-craft된 자질이나 품사 태깅 정보 및 기구축 사전(lexicon) 정보를 추가로 활용하여 자질을 보강(augmentation)하는 방법을 제안한다. 실험 결과 본 논문에서 제안하는 방법에 따라 자질을 보강한 한국어 개체명 인식 시스템의 성능 향상을 확인하였다. 또한 본 연구의 결과를 한국어 자연어처리(NLP) 및 개체명 인식 시스템을 연구하는 연구자들과의 향후 협업 연구를 위해 github를 통해 공개하였다.

IoT 스트리밍 센서 데이터에 기반한 실시간 PM10 농도 예측 LSTM 모델 (Real-time PM10 Concentration Prediction LSTM Model based on IoT Streaming Sensor data)

  • 김삼근;오택일
    • 한국산학기술학회논문지
    • /
    • 제19권11호
    • /
    • pp.310-318
    • /
    • 2018
  • 최근 사물인터넷(IoT)의 등장으로 인터넷에 연결된 다양한 기기들에 의해 대규모의 데이터가 생성됨에 따라 빅데이터 분석의 중요성이 증가하고 있다. 특히 실시간으로 생성되는 대규모의 IoT 스트리밍 센서 데이터를 분석하여 새로운 의미 있는 미래 예측을 통해 다양한 서비스를 제공하는 것이 필요하게 되었다. 본 논문은 AWS를 활용하여 IoT 센서로부터 생성되는 스트리밍 데이터에 기반하여 실시간 실내 PM10 농도 예측 LSTM 모델을 제안한다. 또한 제안 모델에 따른 실시간 실내 PM10 농도 예측 서비스를 구축한다. 논문에 사용된 데이터는 PM10 IoT 센서로부터 24시간 동안 수집된 스트리밍 데이터이다. 이를 LSTM의 입력 데이터로 사용하기 위해 PM10 시계열 데이터로부터 30개의 연속된 값으로 이루어진 시퀀스 데이터로 변환한다. LSTM 모델은 바로 인접한 공간으로 이동해 가는 슬라이딩 윈도우 프로세스를 통하여 학습한다. 또한 모델의 성능 개선을 위해 24시간마다 수집한 스트리밍 데이터에 대해 점진적 학습 방법을 적용한다. 제안한 LSTM 모델의 성능을 평가하기 위해 선형회귀 모델 및 순환형 신경망(RNN) 모델과 비교한다. 실험 결과는 제안한 LSTM 예측 모델이 선형 회귀보다 700%, RNN 모델보다는 140% 성능 개선이 있음을 보여주었다.

Merlin 툴킷을 이용한 한국어 TTS 시스템의 심층 신경망 구조 성능 비교 (Performance comparison of various deep neural network architectures using Merlin toolkit for a Korean TTS system)

  • 홍준영;권철홍
    • 말소리와 음성과학
    • /
    • 제11권2호
    • /
    • pp.57-64
    • /
    • 2019
  • 본 논문에서는 음성 합성을 위한 오픈소스 시스템인 Merlin 툴킷을 이용하여 한국어 TTS 시스템을 구성한다. TTS 시스템에서 HMM 기반의 통계적 음성 합성 방식이 널리 사용되고 있는데, 이 방식에서 문맥 요인을 포함시키는 음향 모델링 구성의 한계로 합성 음성의 품질이 저하된다고 알려져 있다. 본 논문에서는 여러 분야에서 우수한 성능을 보여 주는 심층 신경망 기법을 적용하는 음향 모델링 아키텍처를 제안한다. 이 구조에는 전연결 심층 피드포워드 신경망, 순환 신경망, 게이트 순환 신경망, 단방향 장단기 기억 신경망, 양방향 장단기 기억 신경망 등이 포함되어 있다. 실험 결과, 문맥을 고려하는 시퀀스 모델을 아키텍처에 포함하는 것이 성능 개선에 유리하다는 것을 알 수 있고, 장단기 기억 신경망을 적용한 아키텍처가 가장 좋은 성능을 보여주었다. 그리고 음향 특징 파라미터에 델타와 델타-델타 성분을 포함하는 것이 성능 개선에 유리하다는 결과가 도출되었다.

A Study on Deep Learning Model for Discrimination of Illegal Financial Advertisements on the Internet

  • Kil-Sang Yoo; Jin-Hee Jang;Seong-Ju Kim;Kwang-Yong Gim
    • 한국컴퓨터정보학회논문지
    • /
    • 제28권8호
    • /
    • pp.21-30
    • /
    • 2023
  • 인터넷 불법금융광고는 인터넷 카페, 블로그 등을 통해 통장매매, 신용카드·휴대폰결제현금화 및 개인신용정보매매 등 불법금융행위를 목적으로 한다. 금융감독당국의 노력에도 불구하고 불법금융행위는 줄어들지 않고 있다. 본 연구는 인터넷 불법금융광고 게시글에 파이썬 딥러닝 기반 텍스트 분류기법을 적용해 불법여부를 탐지하는 모델을 제안한다. 텍스트 분류기법으로 주로 사용되는 합성곱 신경망(CNN: Convolutional Neural Network), 순환 신경망(RNN: Recurrent Neural Network), 장단기 메모리(LSTM: Long-Short Term Memory) 및 게이트 순환 유닛(GRU: Gated Recurrent Unit)을 활용한다. 그동안 수작업으로 심사한 불법확인 결과를 기초 데이터로 이용한다. 한국어 자연어처리와 딥러닝 모델의 하이퍼파라미터 조절을 통해 최적의 성능을 보이는 모델을 완성하였다. 본 연구는 그동안 이뤄지지 않았던 인터넷 불법금융광고 판별을 위한 딥러닝 모델을 제시하였다는데 큰 의미가 있다. 또한 딥러닝 모델에서 91.3~93.4% 수준의 정확도를 보임으로써 불법금융광고 탐지에 딥러닝 모델을 실제 적용하여 불법금융광고 근절에 기여할 수 있기를 기대해 본다.

데이터 예측을 위한 텐서플로우 기반 기계학습 알고리즘 비교 연구 (A Comparative Study of Machine Learning Algorithms Based on Tensorflow for Data Prediction)

  • ;장성봉
    • 정보처리학회논문지:컴퓨터 및 통신 시스템
    • /
    • 제10권3호
    • /
    • pp.71-80
    • /
    • 2021
  • 기계학습에서 정확한 데이터 예측을 위해서는 적절한 인공신경망 알고리즘을 선택해야 한다. 이러한 알고리즘에는 심층 신경망 (DNN), 반복 신경망 (RNN), 장단기 기억 (LSTM) 네트워크 및 게이트 반복 단위 (GRU) 신경망등을 들 수 있다. 개발자가 실험을 위해, 하나를 선택해야 하는 경우, 각 알고리즘의 성능에 대한 충분한 정보가 없었기 때문에, 직관에 의존할 수 밖에 없었다. 본 연구에서는 이러한 어려움을 완화하기 위해 실험을 통해 예측 오류(RMSE)와 처리 시간을 비교 평가 하였다. 각 알고리즘은 텐서플로우를 이용하여 구현하였으며, 세금 데이터를 사용하여 학습을 수행 하였다. 학습 된 모델을 사용하여, 세금 예측을 수행 하였으며, 실제값과의 비교를 통해 정확도를 측정 하였다. 또한, 활성화 함수와 다양한 최적화 함수들이 알고리즘에 미치는 영향을 비교 분석 하였다. 실험 결과, GRU 및 LSTM 알고리즘의 경우, RMSE(Root Mean Sqaure Error)는 0.12이고 R2값은 각각 0.78 및 0.75로 다른 알고리즘에 비해 더 낳은 성능을 보여 주었다. 기본 심층 신경망(DNN)의 경우, 처리 시간은 가장 낮지만 예측 오류는 0.163로 성능은 가장 낮게 측정 되었다. 최적화 알고리즘의 경우, 아담(Adam)이 오류 측면에서 최고의 성능을, 처리 시간 측면에서 최악의 성능을 보여 주었다. 본 연구의 연구결과는 데이터 예측을 위한 알고리즘 선택시, 개발자들에게 유용한 정보로 사용될 것으로 예상된다.