• Title/Summary/Keyword: LSTM(Long Short Term Memory)

Search Result 523, Processing Time 0.033 seconds

Danger detection technology based on multimodal and multilog data for public safety services

  • Park, Hyunho;Kwon, Eunjung;Byon, Sungwon;Shin, Won-Jae;Jung, Eui-Suk;Lee, Yong-Tae
    • ETRI Journal
    • /
    • v.44 no.2
    • /
    • pp.300-312
    • /
    • 2022
  • Recently, public safety services have attracted significant attention for their ability to protect people from crimes. Rapid detection of dangerous situations (that is, abnormal situations where someone may be harmed or killed) is required in public safety services to reduce the time required to respond to such situations. This study proposes a novel danger detection technology based on multimodal data, which includes data from multiple sensors (for example, accelerometer, gyroscope, heart rate, air pressure, and global positioning system sensors), and multilog data, which includes contextual logs of humans and places (for example, contextual logs of human activities and crime-ridden districts) over time. To recognize human activity (for example, walk, sit, and punch), the proposed technology uses multimodal data analysis with an attitude heading reference system and long short-term memory. The proposed technology also includes multilog data analysis for detecting whether recognized activities of humans are dangerous. The proposed danger detection technology will benefit public safety services by improving danger detection capabilities.

Blind Drift Calibration using Deep Learning Approach to Conventional Sensors on Structural Model

  • Kutchi, Jacob;Robbins, Kendall;De Leon, David;Seek, Michael;Jung, Younghan;Qian, Lei;Mu, Richard;Hong, Liang;Li, Yaohang
    • International conference on construction engineering and project management
    • /
    • 2022.06a
    • /
    • pp.814-822
    • /
    • 2022
  • The deployment of sensors for Structural Health Monitoring requires a complicated network arrangement, ground truthing, and calibration for validating sensor performance periodically. Any conventional sensor on a structural element is also subjected to static and dynamic vertical loadings in conjunction with other environmental factors, such as brightness, noise, temperature, and humidity. A structural model with strain gauges was built and tested to get realistic sensory information. This paper investigates different deep learning architectures and algorithms, including unsupervised, autoencoder, and supervised methods, to benchmark blind drift calibration methods using deep learning. It involves a fully connected neural network (FCNN), a long short-term memory (LSTM), and a gated recurrent unit (GRU) to address the blind drift calibration problem (i.e., performing calibrations of installed sensors when ground truth is not available). The results show that the supervised methods perform much better than unsupervised methods, such as an autoencoder, when ground truths are available. Furthermore, taking advantage of time-series information, the GRU model generates the most precise predictions to remove the drift overall.

  • PDF

Developing radar-based rainfall prediction model with GAN(Generative Adversarial Network) (생성적 적대 신경망(GAN)을 활용한 강우예측모델 개발)

  • Choi, Suyeon;Sohn, Soyoung;Kim, Yeonjoo
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2021.06a
    • /
    • pp.185-185
    • /
    • 2021
  • 기후변화로 인한 돌발 강우 등 이상 기후 현상이 증가함에 따라 정확한 강우예측의 중요성은 더 증가하는 추세이다. 전통적인 강우예측의 경우 기상수치모델 또는 외삽법을 이용한 레이더 기반 강우예측 기법을 이용하며, 최근 머신러닝 기술의 발달에 따라 이를 활용한 레이더 자료기반 강우예측기법이 개발되고 있다. 기존 머신러닝을 이용한 강우예측 모델의 경우 주로 시계열 이미지 예측에 적합한 2차원 순환 신경망 기반 기법(Convolutional Long Short-Term Memory, ConvLSTM) 또는 합성곱 신경망 기반 기법(Convolutional Neural Network(CNN) Encoder-Decoder) 등을 이용한다. 본 연구에서는 생성적 적대 신경망 기반 기법(Generative Adversarial Network, GAN)을 이용해 미래 강우예측을 수행하도록 하였다. GAN 방법론은 이미지를 생성하는 생성자와 이를 실제 이미지와 구분하는 구별자가 경쟁하며 학습되어 현재 이미지 생성 분야에서 높은 성능을 보여주고 있다. 본 연구에서 개발한 GAN 기반 모델은 기상청에서 제공된 2016년~2019년까지의 레이더 이미지 자료를 이용하여 초단기, 단기 강우예측을 수행하도록 학습시키고, 2020년 레이더 이미지 자료를 이용해 단기강우예측을 모의하였다. 또한, 기존 머신러닝 기법을 기반으로 한 모델들의 강우예측결과와 GAN 기반 모델의 강우예측결과를 비교분석한 결과, 본 연구를 통해 개발한 강우예측모델이 단기강우예측에 뛰어난 성능을 보이는 것을 확인할 수 있었다.

  • PDF

Korean sentence spacing correction model using syllable and morpheme information (음절과 형태소 정보를 이용한 한국어 문장 띄어쓰기 교정 모델)

  • Choi, Jeong-Myeong;Oh, Byoung-Doo;Heo, Tak-Sung;Jeong, Yeong-Seok;Kim, Yu-Seop
    • Annual Conference on Human and Language Technology
    • /
    • 2020.10a
    • /
    • pp.141-144
    • /
    • 2020
  • 한국어에서 문장의 가독성이나 맥락 파악을 위해 띄어쓰기는 매우 중요하다. 또한 자연 언어 처리를 할 때 띄어쓰기 오류가 있는 문장을 사용하면 문장의 구조가 달라지기 때문에 성능에 영향을 미칠 수 있다. 기존 연구에서는 N-gram 기반 통계적인 방법과 형태소 분석기를 이용하여 띄어쓰기 교정을 해왔다. 최근 들어 심층 신경망을 활용하는 많은 띄어쓰기 교정 연구가 진행되고 있다. 기존 심층 신경망을 이용한 연구에서는 문장을 음절 단위 또는 형태소 단위로 처리하여 교정 모델을 만들었다. 본 연구에서는 음절과 형태소 단위 모두 모델의 입력으로 사용하여 두 정보를 결합하여 띄어쓰기 교정 문제를 해결하고자 한다. 모델은 문장의 음절과 형태소 시퀀스에서 지역적 정보를 학습할 수 있는 Convolutional Neural Network와 순서정보를 정방향, 후방향으로 학습할 수 있는 Bidirectional Long Short-Term Memory 구조를 사용한다. 모델의 성능은 음절의 정확도와 어절의 정밀도, 어절의 재현율, 어절의 F1 score를 사용해 평가하였다. 제안한 모델의 성능 평가 결과 어절의 F1 score가 96.06%로 우수한 성능을 냈다.

  • PDF

Comparative Analysis of Baseflow Separation using Conventional and Deep Learning Techniques

  • Yusuff, Kareem Kola;Shiksa, Bastola;Park, Kidoo;Jung, Younghun
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2022.05a
    • /
    • pp.149-149
    • /
    • 2022
  • Accurate quantitative evaluation of baseflow contribution to streamflow is imperative to address seasonal drought vulnerability, flood occurrence and groundwater management concerns for efficient and sustainable water resources management in watersheds. Several baseflow separation algorithms using recursive filters, graphical method and tracer or chemical balance have been developed but resulting baseflow outputs always show wide variations, thereby making it hard to determine best separation technique. Therefore, the current global shift towards implementation of artificial intelligence (AI) in water resources is employed to compare the performance of deep learning models with conventional hydrograph separation techniques to quantify baseflow contribution to streamflow of Piney River watershed, Tennessee from 2001-2021. Streamflow values are obtained from the USGS station 03602500 and modeled to generate values of Baseflow Index (BI) using Web-based Hydrograph Analysis (WHAT) model. Annual and seasonal baseflow outputs from the traditional separation techniques are compared with results of Long Short Term Memory (LSTM) and simple Gated Recurrent Unit (GRU) models. The GRU model gave optimal BFI values during the four seasons with average NSE = 0.98, KGE = 0.97, r = 0.89 and future baseflow volumes are predicted. AI offers easier and more accurate approach to groundwater management and surface runoff modeling to create effective water policy frameworks for disaster management.

  • PDF

Anomaly detection of smart metering system for power management with battery storage system/electric vehicle

  • Sangkeum Lee;Sarvar Hussain Nengroo;Hojun Jin;Yoonmee Doh;Chungho Lee;Taewook Heo;Dongsoo Har
    • ETRI Journal
    • /
    • v.45 no.4
    • /
    • pp.650-665
    • /
    • 2023
  • A novel smart metering technique capable of anomaly detection was proposed for real-time home power management system. Smart meter data generated in real-time were obtained from 900 households of single apartments. To detect outliers and missing values in smart meter data, a deep learning model, the autoencoder, consisting of a graph convolutional network and bidirectional long short-term memory network, was applied to the smart metering technique. Power management based on the smart metering technique was executed by multi-objective optimization in the presence of a battery storage system and an electric vehicle. The results of the power management employing the proposed smart metering technique indicate a reduction in electricity cost and amount of power supplied by the grid compared to the results of power management without anomaly detection.

Indoor Environment Drone Detection through DBSCAN and Deep Learning

  • Ha Tran Thi;Hien Pham The;Yun-Seok Mun;Ic-Pyo Hong
    • Journal of IKEEE
    • /
    • v.27 no.4
    • /
    • pp.439-449
    • /
    • 2023
  • In an era marked by the increasing use of drones and the growing demand for indoor surveillance, the development of a robust application for detecting and tracking both drones and humans within indoor spaces becomes imperative. This study presents an innovative application that uses FMCW radar to detect human and drone motions from the cloud point. At the outset, the DBSCAN (Density-based Spatial Clustering of Applications with Noise) algorithm is utilized to categorize cloud points into distinct groups, each representing the objects present in the tracking area. Notably, this algorithm demonstrates remarkable efficiency, particularly in clustering drone point clouds, achieving an impressive accuracy of up to 92.8%. Subsequently, the clusters are discerned and classified into either humans or drones by employing a deep learning model. A trio of models, including Deep Neural Network (DNN), Residual Network (ResNet), and Long Short-Term Memory (LSTM), are applied, and the outcomes reveal that the ResNet model achieves the highest accuracy. It attains an impressive 98.62% accuracy for identifying drone clusters and a noteworthy 96.75% accuracy for human clusters.

Driving Anomaly Pattern Detection System Based on Vehicle Internal Diagnostic Data Analysis (차량 내부 진단 데이터 분석 기반의 주행 이상 패턴 감지 시스템)

  • Tae-jeong Park;Ji-ho Park;Bo-yoon Seo;Jun-ha Shin;Kyung-hwan Choi;Hongseok Yoo
    • Proceedings of the Korean Society of Computer Information Conference
    • /
    • 2024.01a
    • /
    • pp.299-300
    • /
    • 2024
  • 첨단 기술의 발전과 함께 지능형 운전자 보조 시스템의 성능 및 교통 시스템 체계가 고도화됨에 따라 전반적인 교통사고 발생 건수는 줄어드는 추세지만 대한민국의 교통사고 발생 빈도는 아직 OECD 평균 대비 높은 실정이다. 특히, 2020년 경제 협력 개발 기구(OECD) 통계에 따르면 대한민국의 인구 10만 명당 교통사고 사망자 수는 회원국 36개 중 29위로 매우 높은 축에 속한다. 따라서, 본 논문에서는 교통사고 발생률을 낮추는 데 도움을 줄 수 있는 주행 이상 패턴 감지 시스템을 제안한다. 제안한 방법에서는 실시간 영상 분석을 통해 신호등 및 차선을 인식함과 동시 차량 내부 진단 데이터에 대한 시계열 분석을 기반으로 운전자의 운전 패턴을 분석한 후 평소와 다른 이상 징후를 발견하면 운전자에게 경고 알림을 제공하여 위험한 상황을 회피할 수 있도록 지원한다.

  • PDF

Forecasting Baltic Dry Index by Implementing Time-Series Decomposition and Data Augmentation Techniques (시계열 분해 및 데이터 증강 기법 활용 건화물운임지수 예측)

  • Han, Min Soo;Yu, Song Jin
    • Journal of Korean Society for Quality Management
    • /
    • v.50 no.4
    • /
    • pp.701-716
    • /
    • 2022
  • Purpose: This study aims to predict the dry cargo transportation market economy. The subject of this study is the BDI (Baltic Dry Index) time-series, an index representing the dry cargo transport market. Methods: In order to increase the accuracy of the BDI time-series, we have pre-processed the original time-series via time-series decomposition and data augmentation techniques and have used them for ANN learning. The ANN algorithms used are Multi-Layer Perceptron (MLP), Recurrent Neural Network (RNN), and Long Short-Term Memory (LSTM) to compare and analyze the case of learning and predicting by applying time-series decomposition and data augmentation techniques. The forecast period aims to make short-term predictions at the time of t+1. The period to be studied is from '22. 01. 07 to '22. 08. 26. Results: Only for the case of the MAPE (Mean Absolute Percentage Error) indicator, all ANN models used in the research has resulted in higher accuracy (1.422% on average) in multivariate prediction. Although it is not a remarkable improvement in prediction accuracy compared to uni-variate prediction results, it can be said that the improvement in ANN prediction performance has been achieved by utilizing time-series decomposition and data augmentation techniques that were significant and targeted throughout this study. Conclusion: Nevertheless, due to the nature of ANN, additional performance improvements can be expected according to the adjustment of the hyper-parameter. Therefore, it is necessary to try various applications of multiple learning algorithms and ANN optimization techniques. Such an approach would help solve problems with a small number of available data, such as the rapidly changing business environment or the current shipping market.

Symbolizing Numbers to Improve Neural Machine Translation (숫자 기호화를 통한 신경기계번역 성능 향상)

  • Kang, Cheongwoong;Ro, Youngheon;Kim, Jisu;Choi, Heeyoul
    • Journal of Digital Contents Society
    • /
    • v.19 no.6
    • /
    • pp.1161-1167
    • /
    • 2018
  • The development of machine learning has enabled machines to perform delicate tasks that only humans could do, and thus many companies have introduced machine learning based translators. Existing translators have good performances but they have problems in number translation. The translators often mistranslate numbers when the input sentence includes a large number. Furthermore, the output sentence structure completely changes even if only one number in the input sentence changes. In this paper, first, we optimized a neural machine translation model architecture that uses bidirectional RNN, LSTM, and the attention mechanism through data cleansing and changing the dictionary size. Then, we implemented a number-processing algorithm specialized in number translation and applied it to the neural machine translation model to solve the problems above. The paper includes the data cleansing method, an optimal dictionary size and the number-processing algorithm, as well as experiment results for translation performance based on the BLEU score.