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Abstract

A novel smart metering technique capable of anomaly detection was proposed

for real-time home power management system. Smart meter data generated in

real-time were obtained from 900 households of single apartments. To detect

outliers and missing values in smart meter data, a deep learning model, the

autoencoder, consisting of a graph convolutional network and bidirectional

long short-term memory network, was applied to the smart metering tech-

nique. Power management based on the smart metering technique was exe-

cuted by multi-objective optimization in the presence of a battery storage

system and an electric vehicle. The results of the power management employ-

ing the proposed smart metering technique indicate a reduction in electricity

cost and amount of power supplied by the grid compared to the results of

power management without anomaly detection.
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1 | INTRODUCTION

Air pollution, climate change, and depletion of fossil fuel
resources are key societal issues in this century. The
transportation and electric power generation industries,
which are among the largest consumers of fossil fuels,
have voiced these concerns. In the United States, the
industrial sector is the largest energy consumer [1], con-
suming 31% of the total energy and accounting for
approximately one third of total greenhouse gas (GHG)
emissions in the country [2, 3]. In the United Kingdom,
households accounted for 39% of the total electricity con-
sumption and 9% of the carbon dioxide (CO2) emission in
2019 [4]. Therefore, households have great potential to

realize the net-zero emission goal by implementing solu-
tions like decentralized electricity production at home
and reducing electricity use [5].

When considering the photovoltaic (PV) power bat-
tery system’s storage component, the storage system
increases the local generating self-consumption while
decreasing power costs, fossil fuel generation, and the
strain on the electricity distribution infrastructure [6].
The main reasons why households should embrace
renewable energy are economic and environmental bene-
fits [7]. The US government established a goal of reduc-
ing energy consumption by 17%, below 2005 levels, by
2020. As a result, technologies that promise to cut GHG
emissions while deferring or avoiding large additional
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investments have piqued public attention. The energy effi-
ciency improvements combined with demand response
(DR) are expected to lower the need for new generation
capacity from 214 to 133 GW in 2030 [8]. Additionally, the
DR has been proposed as a strategy to address supply–
demand oscillations in the grid with significant penetra-
tion of variable renewable energy sources (RESs) of inter-
mittent nature [9]. With the high penetration of RESs, DR
has also been advocated as a solution to control the
supply–demand oscillations in the grid [10, 11]. Several
research findings have provided customers with informa-
tion in various areas, allowing them to better regulate the
amount of electricity used by interruptible, non-interrupt-
ible, shiftable, and non-shiftable devices in reaction to the
changing price. Human and automatic control systems
have been extensively studied to lower the electricity
demand of buildings during peak periods [12, 13].

The complexity of the power system has been increas-
ing, particularly in the distribution grids, and suitable
measurement infrastructure should be deployed [14, 15].
To deal with these challenges and achieve the moderni-
zation of the conventional electricity infrastructure,
smart metering and control systems that operate based
on the interaction between suppliers and consumers are
essential. A smart metering infrastructure (SMI) is
described as an electronic system that can measure
energy consumption via smart meters (SMs) by providing
more diverse information than the existing infrastructure
and can send/receive the usage details directly to/from
other parties through electronic communication net-
works. When considering the scope of advanced metering
infrastructure (AMI) innovations, SMs have emerged as
an incredible asset, particularly for data analytics. Due to
its large volume, velocity, and variety, SM data have sig-
nificantly enhanced the degree of information gathering
across dispersed networks and have acquired fame in big
data analytics. Furthermore, the large volume of SM data
allows optimal real-time monitoring and control of
electric utilities to increase reliability and operational
efficiency, as well as enhance key performance measure-
ments, including system average interruption duration
index and customer average interruption duration index.

As the electricity market is based on a cost mandatory
pool system in Korea, the fuel cost is considered a signifi-
cant component. The market price consists of the capac-
ity payment (CP) and system marginal price (SMP). The
CP describes the price provided to a generating unit avail-
able for a day, and the SMP represents the cost of the
most expensive generating unit obtained in the price set-
ting schedule, which minimizes the total operational
costs of the generating units. Additionally, it depends on
the bidding price of a marginal plant predetermined by
the fuel cost and plant performance. Energy prosumers

with PV system contracts with Korea Electric Power Cor-
poration can obtain a profit from the power purchase
agreement by selling surplus electricity at SMP, which is
the most common electricity trading method for energy
self-consumption [16]. Furthermore, through the electric-
ity trading system, surplus electricity can be directly
traded to the nearby energy consumers or prosumers as a
form of peer-to-peer (P2P) transaction [17].

Measuring and verifying the energy-saving effects is
essential when an operational strategy is developed with
an investment to increase energy efficiency. After imple-
menting energy conservation measures, the measure and
verification (M&V) process is used to plan, measure, col-
lect, and analyze data, which is applied to verify and report
the energy-saving effects of various facilities. To increase
energy efficiency, the international performance measure-
ment and verification protocol (IPMVP) was developed by
the efficiency valuation organization. To increase the cer-
tainty and reliability of the energy-saving effects and
reduce transaction costs with an M&V plan, IPMVP pro-
vides the framework and evaluation criteria for M&V, and
IPMVP is a globally recognized protocol. The measured
data are integrated with the process of developing, instal-
ling, and operating energy-saving strategies through rou-
tine and non-routine adjustments. The routine
adjustments are applied to the overall energy management
factors, which are expected to change periodically, such as
weather and production volume. Routine adjustment can
be achieved using several techniques, including constant
value (no adjustment) or multiple parameter non-linear
equations with independent variables. The non-routine
adjustments are applied to energy management factors
that are not expected to change, such as the size and
design of the facility, the operation of installed equipment,
and the type of occupant. However, these factors should
be monitored in order to prepare for changes during the
operating period. Therefore, the M&V plan calculates sav-
ing effects by comparing the measured consumption
before and after the implementation of an operational
strategy, making appropriate adjustments for changes,
such as occupancy, production, and weather.

The growing use of information and communication
innovation in smart cities is causing a major shift in the
energy management paradigm for power networks and
buildings [18]. Building energy management is a critical
responsibility for improving energy efficiency and reduc-
ing the mismatch between actual and expected energy
consumption, which is frequently caused by erroneous
occupant behavior or equipment and control system fail-
ures [10]. To increase energy efficiency, comfort, and
equipment life, while also lowering energy consumption
and operating expenses, it is crucial to have an efficient
management system. Anomaly detection is incredibly
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helpful in enhancing the performance of building energy
management, and it is promising in terms of cost reduc-
tion when incorporated into the energy data detection
strategy [11]. Clustering algorithms and other machine
learning algorithms with long short-term memory
(LSTM) networks have been applied to SM data in recent
studies, mainly in the context of anomaly detection
[19, 20]. There is an immense potential for anomaly
detection at various levels of research in the area of build-
ing energy management. This sort of investigation has
been primarily concentrated at the framework level
(e.g., heating, ventilation, and air conditioning [HVAC]
systems). Furthermore, in a liberalized energy market,
energy profiling is highly desirable for load prediction
[12, 13], tariff setup description [14], client organization
[21], employing targeted demand side management strat-
egy [15], encouraging building energy demand changes,
and executing DR schemes.

The following are the main contributions of this
work:

1. A novel smart metering technique capable of anomaly
detection is proposed for real-time home power man-
agement. The proposed technique for anomaly detec-
tion can detect outliers and missing values in the SM
data. In fact, the smart metering technique also
enables the prediction of new SM data.

2. A predictive type of power management is implemen-
ted with the assistance of anomaly detection to reduce
peak load and electricity costs.

3. A deep neural network (DNN) model, the autoenco-
der, consisting of a graph convolutional network
(GCN) and bidirectional long short-term memory
(BiLSTM) network, is adopted for the anomaly detec-
tion and the prediction of SM data. Predicting the
future value of SM data enables power management
to be more cost effective.

4. Optimization with a multi-objective function is pro-
posed to increase the profits of renewable energy pro-
viders (REPs). The REPs may have reactive clients
due to the lack of a home energy management system
(HEMS) or a customer’s unwillingness to participate
in DR programs. These clients tend to choose the
energy usage or manage it based on their expertise or
experience rather than evaluating the best plan [8].
The REPs may not be aware of the function of the
reactive customers’ reaction pattern in these circum-
stances. Therefore, the REPs must also learn about
the consumers’ energy usage patterns.

The remainder of this article is organized as follows.
In Section 2, a review of the home power management is
presented. Section 3 presents an overview of reported

studies dealing with smart metering systems. Section 4
provides a description of the cloud-based smart metering
system. Section 5 presents the DNN model for anomaly
detection and prediction of SM data, as well as power
management based on the DNN model. Section 6 is for
the discussion of the results of power management.
Section 7 concludes this paper.

2 | LITERATURE REVIEW

Presently, the applications of renewable energy power
transformation are evidently accessible both technologi-
cally [22] and monetarily [23]. In the Kuda Bandos Island
of Maldives, Jung and others. [24] assessed three potential
system configurations using HOMER® software to deter-
mine which configuration would result in the most opti-
mal off-grid energy management. Their findings indicate
that a PV system can be a cost effective alternative for the
resort, and grid parity can be achieved within the project’s
lifetime. The levelized cost of electricity and the time
taken to reach grid parity when solar PV and battery stor-
age are deployed were analyzed in their study. Recently,
studies dealing with smart grids operated with the DR sys-
tem have been conducted, regarding energy management
with optimization techniques, such as mixed-integer lin-
ear programming [25], geometric programming [26],
model predictive control [27], dynamic programming
[28], and stochastic dynamic programming [29].

Electric utility companies all around the world have
been focusing on power system stability and blackout
management. In recent years, smart grids have contrib-
uted to boosting dependability, versatility, and stability,
as well as enhancing energy management across power
utilities by coordinating the needs and capacities of gen-
eration sources, grid machinists, and end-users through
remote communication. According to a recent study [30],
when individuals’ work profiles are integrated into build-
ing energy management systems, 10%–40% of electricity
can be saved in households. Capozzoli and others [31]
proposed an overlay structure for the mining of regular
load profiles at solitary and different structure levels and
explored several applications connected to the analysis of
energy profiles in buildings. Particular information ana-
lytics methods, such as clustering algorithms, have been
used to address energy profiling in structures [32, 33].
Chicco [32] provided an overview of the various cluster-
ing approaches and clustering validity pointers used to
assemble similar load profiles. Fernandes and others. [33]
used the fuzzy C-means method to investigate 1 year-long
hourly gas usage information of more than 1000 build-
ings to derive typical patterns linked with the respective
consumer groups and discovered that the peaks of the
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morning and evening usage primarily defined the agent
profiles.

Developing an intelligent HEMS has become an
important goal to support the trend toward a more sus-
tainable energy supply for the SG. One of the key aspects
of the SG is the intelligent HEMS, which automatically
adjusts household loads through a link between con-
sumers with options of SMs, smart appliances, electric
vehicles, and home power generation and storage sys-
tems. Based on the real-time supply and demand of
microgrids, a distributed dynamic pricing strategy for
plug-in hybrid electric vehicle management integrated
with smart grids was devised in Erdinc and others [34].
The optimal portfolio selection technique was used by
Bera and others [35] to build a dynamic appliance sched-
uling scheme. Additionally, metaheuristic optimization
was used to optimize the scheduling of shiftable loads in
an SG [36]. A Stackelberg game in Yu and Hong [37] was
used to arrange the optimal regulation of home appli-
ances via virtual power trading. A deterministic DR
model for energy usage optimizer software, such as
HEMS, in which the day-ahead cost of electricity is
known ahead of time, was discussed in Luo and others
[38] and Vanthournout and others [39]. A benchmark
has been presented in which the HEMS combines an arti-
ficial neural network to anticipate future pricing and
multiagent reinforcement learning to select the best
options for household appliance.

3 | RELATED WORKS: SMART
METERING SYSTEM

In the past few years, smart metering systems have
received significant attention from European Union
(EU) countries. These systems have been significantly
influenced by the EU Energy Efficiency Directive, aiming
to minimize the negative environmental impacts of
energy generating units and satisfy the commitments rel-
evant to climate change under the Kyoto protocol [40].
Also, the structure of the smart metering system is stan-
dardized by the European Federation cooperating with
the SM coordination group CEN-CENELEC-ETSI. In the
standardized infrastructure, the distribution system oper-
ator (DSO) manages the grid operation in the designated
region and is responsible for installing and maintaining
SMs in each household. The energy suppliers are com-
mercial groups that generate or purchase electricity from
the self-energy production system or electric utility and
sell it to customers, using the infrastructure of the DSO
to deliver this electricity. Additionally, the infrastructure
provides smart service based on the shared data by the
energy suppliers, energy traders, and energy service

companies while prioritizing customer privacy protec-
tion. With the introduction of SMs, the independent ser-
vice providers (ISPs) can offer optional services, such as
providing a detailed analysis of electricity usage and
guidelines to save energy consumption.

The Netherlands has deployed a smart metering sys-
tem for the home area, which measures electricity usage
and delivers information related to gas, heat, and water
meters to a data collection server by connecting meters to
an integrated interface. The energy supplier obtains the
customer’s meter readings provided by the DSO to issue
the bill to the customer. The Dutch DSOs established the
energy data services Nederland as a central organization
to facilitate information delivery management instead of
supervising the many-to-many relationships between the
DSOs and energy suppliers. Additionally, the energy data
services Nederland has an obligation to provide SM data
to the energy suppliers and ISPs, superseding the right of
the DSO in each region. The specification of SMs is regu-
lated by the Dutch SM requirements and standards [41].
As most households have a connection with natural gas,
SMs simultaneously access the readings of the electricity
and gas. Besides measuring energy consumption, SMs
also measure the power quality and outage by providing
time synchronization and shifting between tariffs.

The German smart metering strategy, which places a
strong emphasis on standardization and security, is built
on two primary components: SMs and smart meter gate-
ways, and the combination of the two is referred to as a
smart metering system. In Germany, a significant share
is achieved in renewable energy due to guaranteed feed-
in tariffs of renewable energy and well-conditioned grid
infrastructure. Market-oriented tariffs and higher intelli-
gence are required for power grids to meet rapidly
increasing renewable energy demands. Therefore, the SG
applications, such as the provision of secondary energy
resources by virtual power plants, feed-in management
through direct control of distributed energy resources
(DERs), DR management, and applications to change the
consumers’ behavior, are required to be addressed by
German regulation and the grid operator. Secondary
reserve by the DER and feed-in management has been
previously established, and the DR program management
to influence customer behavior is being addressed. In
Germany, several research and development projects,
such as the decentralized energy management systems
[42] and virtual power plants [43], the provision of decen-
tralized ancillary services from renewable energy genera-
tion units, have been initiated [44]. Detailed metering
data and reliable communication with the DER and con-
sumers are required to improve the performance of these
SG applications. The bill “digitalization of the energy
transition” mainly deals with the contents of
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infrastructure regulation, security problems, and price
limitations. As the SMI of Germany is implemented, it is
required to provide DSOs, energy suppliers, consumers,
and authorized groups with smart metering and commu-
nication services, such as collection and storage of SM
data depending on German regulations, and the provi-
sion of secure and private protection of the SM data. In
the regulation of the German SMI, a few key roles and
components are differentiated. In the system configura-
tion, there are a digital SM, an SMGW, and a controllable
local system (CLS). The SMGW is described as a commu-
nicable device, which collects information from the SMs
and delivers it to the assigned receivers. Moreover, it is
used to establish reliable communication channels to
control local CLS devices, achieving security and privacy
requirements. The SMGW administrator has an indepen-
dent authority to check authentication and qualification
for the certification of the authorized external entity
(AEE), which manages the demand for SM data or com-
munication with CLS devices located on the customer’s
site. Depending on the passive and active AEE, regula-
tions of smart metering systems are differentiated. While
the passive AEE only receives the SM data from the
SMGW, the active AEE can interact with CLS devices.

4 | CLOUD-BASED SMART
METERING SYSTEM

4.1 | Structure of smart metering system
in the home area

The SMs monitor, measure, and deliver the real-time
energy consumption data to utility providers based on
the user activity to analyze and control power network
systems. Compared with the traditional meter, the SMs
provide more sophisticated services, such as two-way
real-time communication between utility providers and
SMs, time-based demand data analysis, measuring service
quality, outage management, distribution network analy-
sis and planning, customer billing, demand reduction,
and remote connection. Additionally, the SM enables
continuous reading and recording of the gas, electric,
water, heating, and hot water utilities. The general archi-
tecture of the smart metering system consists of some
units that provide the required amenities to the con-
sumers. Figure 1 depicts the overall framework of the
smart metering system.

A data concentrator is described as a device typically
installed in substations that manages metering data
acquired from multiple SMs in distant households. Deliv-
ering data packets from SM to the data concentrator can
be configured in wireless communication networks, such

as orthogonal frequency-division multiplexing [45, 46].
Also, the data concentrator primarily acts as a store-and-
forward connection between SMs and the rest of the sys-
tem, gathering data on energy usage at remote resi-
dences, relaying the data to the control center, and
delivering the data to the billing system. Furthermore, if
required, it can find and arrange newly installed SMs
while generating repeating chains. Generally, a portion
of infrastructure can be managed autonomously by the
data concentrator, such as keeping track of the power
grid and SMs, affirming malfunctions and disturbances,
and detecting and probing obstructing efforts. While the
data concentrator cannot accept incoming calls, it can
initiate and continue communication if the link is lost.
As described in NTA 8130, the central access server
(CAS) is used as the central application to administer
information collection, control, and parameterization.

Additionally, it serves as a centralized authorization
system to provide authority for accessing the metering
system. As part of the metering framework activity, every
grid operator keeps a collection of servers, and these
servers feature various programs and applications that
are essential to the system’s operations. Moreover, these
servers act as Internet gateways for clients, allowing them
to access their profiles, and monitor their energy con-
sumption patterns. Also, the metering dataset provided
by the servers can be used as the input and output of the
autoencoder for training purposes. Metering data are
used by the ISPs to provide non-essential services, such
as saving electricity through service modules. Commer-
cial entities that generate or purchase electricity and sell
it to customers are referred to as energy suppliers, and
when allocating electricity usage, grid managers often
use the information provided by the metering system.

The smart metering system has multiple ports
through which information can pass to facilitate commu-
nication between system components and market partici-
pants. As shown in Figure 1, four ports are specified by
the NTA 8130 standard: P1, P2, P3, and P4. The read-only
port P1 is used to link the metering installation to

F I GURE 1 Overall architecture of the smart metering system
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external devices. Other local metering equipment can be
connected to port P2, which is used to link the gas/elec-
tricity/water/heat/hot water meters via wired or wireless
connections. Port P3 is used to convey information,
including metering values, status, power quality, and out-
age measures, to the DSO. Through the long-term evolu-
tion, code-division multiple access, or packet radio
service, communication between port P3 and DSO is
established with the communication protocol based on
the international standard IEC 62056. Port P4 is used as a
gateway for ISPs, energy suppliers, and grid operators to
obtain measurements from port P3. Web service to access
the CAS can be provided through port P4, allowing ISPs
and energy suppliers to obtain metering data from cli-
ents, regardless of the responsible DSO.

Customers can benefit from various services provided
by smart metering systems, including the generation of
remotely readable meter data, the facilitation of energy
savings for consumers, and the monitoring of distribution
networks. Additionally, the functionality of a smart
metering system requires a two-way communication net-
work. Grid operators, energy suppliers, service providers,
and customers communicate via messages, providing
information about the state of meter installation and the
operating environment. For instance, energy suppliers
and grid operators can use port P3 to display current state
information on the metering system.

4.2 | Design of the cloud-based smart
metering system

A cloud-based smart metering system is shown in
Figure 2. The data concentrator unit typically collects
data relevant to energy consumption and other cus-
tomers’ information from the SMs of EV and PV opera-
tors through wireless or power line communication
networks and transmits this data to the cloud system in
real-time [47]. This transmitted data can be stored in the
big data server and is verified to manage SM data in con-
nection with the metering data check server. Based on

the meter data, different application services installed in
SMGW are provided to the cloud system via the advanced
metering service server. Furthermore, management ser-
vices, such as the HEMS, are applied to the power system
through the application service server, depending on the
DR program. Customers can access their meter data
through the user portal, which is available in the cloud
system. The proposed cloud-based smart metering system
can address issues, such as the server’s vast capacity and
simultaneous loads on the server, by distributing cloud
systems in each area and providing meter data in con-
junction with the central cloud server.

A brief system for the proof of concept implementa-
tion is constructed based on a structure designed to pre-
validate the structure and service utility of the target
metering cloud system. SM data of electric consumption
collected from 900 households of single dwelling units,
such as apartments, are generated in real-time through a
data concentrator unit emulator, and the process of effi-
ciently collecting, storing, processing, and visualizing the
SM data is identified.

5 | POWER MANAGEMENT BASED
ON ANOMALY DETECTION

This section presents the proposed anomaly detection
and subsequent power management. Figure 3 shows the
power management procedure. The procedure for the
proposed power management consists of data collection,
data preprocessing, data partition, model training, model
validation, and finding anomalies in the anomaly

F I GURE 2 Architecture of cloud-based smart metering system

F I GURE 3 Power management procedure with anomaly

detection in a smart metering cloud system
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detection and multi-objective optimization, control, and
validation in power management. Anomaly detection can
be actively and efficiently applied to the power manage-
ment scheme with BSS/EV charging/discharging
methods by removing outliers and missing values in SM
data. In the data collection step, the electricity consump-
tion data for energy resources are collected from the
smart metering system. Data cleaning, sampling, denois-
ing, and normalization processes are executed in the data
preprocessing step to reduce the complexity obtained in
the collected real-world dataset. To train and evaluate the
performance of the anomaly detection model, the col-
lected dataset is divided into a training set, validation set,
and testing set in the data partition step. In the model
training and validation step, the anomaly detection
model is trained with a training set, and the forecasting
performance and classification performance of the model
are evaluated by mean square error (MSE) and confusion
matrix, respectively. Based on the results of anomaly
detection, power management is performed. In the multi-
objective optimization and control step, the charging/
discharging operations of BSS/EV are determined
depending on the specific condition, and the scheduling
of shiftable loads is executed through multi-objective
optimization, which aims to maximize REP and mini-
mize peak load and electricity cost. In the validation step,
the proposed power management method is evaluated in
terms of improvement in energy efficiency and reduction
in peak power consumption and electricity cost.

5.1 | Anomaly detection

In the smart metering system, outliers and missing values
can randomly occur in nature and are typically caused by
a metering device not delivering measured values or by a
faulty measuring instrument [48]. Moreover, outliers and
missing data are caused by failure of measuring instru-
ments, the poor performance of measuring sensors, errors
during installation and poor protection, intentional dam-
age, power outages, flicker, and phase loss. These values
can incur a gap or discontinuity, and the omission of
detecting these anomalies reduces the accuracy and
energy waste in the power management process. There-
fore, it is essential to identify outliers and missing values
and remove these values before applying a power man-
agement scheme. The deep learning model is established
using an autoencoder to detect outliers and missing
values for anomaly detection. Unsupervised learning,
which is a method for predicting results for new data by
clustering data without labels of correct answers, is used
for the autoencoder.

5.1.1 | GCN-bidirectional LSTM network

Convolution in GCNs is basically multiplying the input
neurons with a set of weights, which are commonly
known as filters or kernels. The same filter will be used
throughout the image within the same layer, referred to
as weight sharing. GCNs perform similar operations in
which the model learns the features by inspecting neigh-
boring nodes. The major difference between CNNs and
GCNs is that CNNs are specially built to operate on regu-
larly structured data, while GCNs are the generalized ver-
sion of CNNs where the number of node connections
varies, and the nodes are unordered. Spatial and spectral
GCNs are generally used for time series image data [49].

The LSTM network, a variant of the recurrent neural
network (RNN), is particularly implemented to process
time series data [50, 51]. Compared to the RNN network
autoencoder, the LSTM network autoencoder is generally
robust for short- and long-time series data. The LSTM cell
has forget, input, and output gates for short and long-
term cell memory, as shown in Figure 4. These gates reg-
ulate the interactions between the various memory units.
The input gate, particularly, determines whether the
input signal can adjust the conditions of the memory cell
or not. The output gate determines whether it can alter
the conditions of other memory cells or not. The forget
gate has the option of forgetting (or remembering) its pre-
vious condition. For each element in the input sequence,
each layer computes the functions as follows:

it ¼ σ W iixtþbiiþWhih t�1ð Þ þbhi
� �

, ð1Þ

f t ¼ σ W if xtþbif þW hfh t�1ð Þ þbhf
� �

, ð2Þ

F I GURE 4 Autoencoder implemented with GCN-BiLSTM

network for anomaly detection
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gt ¼ tanh W igxtþbigþWhgh t�1ð Þ þbhg
� �

, ð3Þ

ot ¼ σ W ioxtþbioþWhoh t�1ð Þ þbho
� �

, ð4Þ

ct ¼ f t � c t�1ð Þ þ it �gt, ð5Þ

ht ¼ ot � tanh ctð Þ, ð6Þ

where W ii,W if ,W ig,W io
� �

, Whi,Whf ,Whg,Who
� �

, and
bhi,bhf , bhg,bho
� �

are input weights, recurrent weights,
and recurrent biases. ht is the hidden state at time t, ct is
the cell state at time t, xt is the input at time t, h t�1ð Þ and
c t�1ð Þ are the hidden state and cell state of the layer at
time (t� 1) or the initial hidden state at time 0, and it, f t,
gt, and ot are the input, forget, cell, and output gates,
respectively. σ is the sigmoid function, introduced as a
logistic function, and “*” is the Hadamard product. The
input gate determines whether new data are stored in the
LSTM cell or not. Two layers exist in this gate, namely,
the sigmoid and tanh layers. The sigmoid layer decides
which value should be updated, while the tanh layer cre-
ates a vector of new candidate values to be stored in the
LSTM cell. Equations (1–3) are used to determine the
output of these layers. The forget gate uses the sigmoid
function to determine whether data should be discon-
nected from the LSTM cell. The output of this gate has a
value between 0 and 1, with 0 indicating that the given
value should be completely discarded and 1 indicating
that the entire value should be preserved. The output gate
uses a sigmoid to identify which part of the LSTM is
assigned to the output and provides a value between
0 and 1 by performing a non-linear tanh function.

Consequently, the output of the sigmoid layer is mul-
tiplied by the obtained result, and the output is obtained
from (4) and (6). Two independent LSTM networks are
used in BiLSTM topologies, using the first network
computing data in the conventional forward sequential
order and the second network computing data in the
opposite order, as shown in Figure 4. At each timestep,
the output values from the forward and backward cells
are linked to produce a solitary output. Forward and
backward LSTM networks are initiated with identical
hidden and cell states. Figure 4 depicts the autoencoder
obtained from the GCN combined with the BiLSTM net-
work. The input of the GCN-BiLSTM autoencoder con-
sists of reading the electric consumption, and the output
is the reconstructed input data calculated by the autoen-
coder. Anomaly detection is implemented by comparing
the difference between the input and output values with
a threshold.

Individual LSTM cells can learn the context from
future information by producing a reversed replica of the

input data. As a result, the network can process both past
and future information at any time, unlike the unidirec-
tional LSTM network that can only process past informa-
tion. Furthermore, since it is computationally affordable,
the BiLSTM network uses the same backpropagation
through time training approach as LSTM networks.

5.1.2 | Autoencoder

A bidirectional autoencoder is an autoencoder that com-
bines an encoder and decoder, each employing the GCN-
BiLSTM network for processing the data sequence. The
input sequence is entered sequentially, and after the last
input sequence, the decoder regenerates the input
sequence or outputs a prediction of the target sequence.
For the autoencoder training, normal data without anom-
alies are used, and the output is calculated to measure
the reconstruction error by comparing the output
sequence with the input sequence. Autoencoders are
trained to minimize the reconstruction error, which can
be defined as the squared error as follows:

e ¼ xt�bxtk k2 ð7Þ

¼ xt�σ W ioxtþbioþW hoh t�1ð Þ þbho
� ��� ��2,

OLSTM tð Þ¼ þ1 normal datað Þ et ≤ θ

0 outlierð Þ et > θ

�
, ð8Þ

where et is reconstruction error, OLSTM tð Þ is the abnormal
detection parameter at time t, t is the 15-minute interval,
and θ is the threshold for reconstruction error. The
reconstruction error et can be used to determine whether
the input is anomaly data. The input is classified as nor-
mal data when the et is lower than the threshold θ, and
outlier when the et is higher than the threshold θ. The xt
is the input data of electric consumption, and `xt is the
data reconstructed by the decoder. When an outlier or a
missing value occurs in the SM data, the outlier or miss-
ing value can be replaced by `xt .

In the data preprocessing stage, data cleaning and
sampling, data denoising, and data normalization are
used to train the GCN-BiLSTM network. When consider-
ing data cleaning and sampling, the classification and
cleaning of five types of energy resource data for each
household, cleaning of tag values, and resampling at
15-min intervals are implemented. The discrete wavelet
transform algorithm is applied to remove the noise,
which is the cause of the degraded training performance
of the GCN-BiLSTM network. Additionally, data normal-
ization with standardization achieves the best training
results for the GCN-BiLSTM network.
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5.2 | Power management

There are numerous customers with varying energy
usage behavior that can be used to cluster the grid’s
energy consumption. In this study, consumers on the grid
may be reactive customers who do not participate in DR
programs and consume energy on an as-needed basis or
proactive customers who use HEMS to discover the
cheapest times to use their equipment. This
section shows the mathematical representation of the
consumer optimization model. Power management with
the smart metering system is implemented through
multi-objective optimization with two objective func-
tions. The first objective function is to maximize the
profit of REPs while reducing grid dependency and
increasing RES utilization. The second objective function
is for customers to minimize the peak load while consid-
ering the three types of DR programs. Furthermore, the
charging/discharging operations of BSS/EV are deter-
mined based on the results of anomaly detection using
the GCN-BiLSTM autoencoder.

5.2.1 | Objective function of REP’s profit
maximization by minimizing grid dependency

The first objective function is proposed to lessen the grid
power consumption and increase PV power utilization,
aiming to maximize the profit of REPs. The power con-
sumption of the charging/discharging of BSS/EV is also
considered for power management of the smart metering
system. Power management implemented for the maxi-
mization of REP’s profit is advantageous in realizing the
profits and yields a platform that is profitable via the
SMGW. Additionally, it offers greater benefits to con-
sumers and allows them to actively participate in the
energy market.

min
PWgrid tð Þ, Ogrid tð Þ, PWPV tð Þ, OPV tð Þ
PWBSS tð Þ, OBSS tð Þ, PWEV tð Þ, OEV tð Þ

� �
PWgrid tð Þ�Ogrid tð Þ
�PWPV tð Þ�OPV tð Þ
þPWBSS tð Þ �OBSS tð Þ
þPWEV tð Þ�OEV tð Þ

26664
37775,
ð9Þ

where PWgrid tð Þ is the grid power consumption for load
demand at time t, Ogrid tð Þ is the switch function for the
grid power consumption at time t, PWPV tð Þ is the PV
power consumption for load demand at time t, OPV tð Þ is
the switch function for the PV power consumption at
time t, PWBSS tð Þ is the power consumption for BSS charg-
ing/discharging at time t, OBSS tð Þ is the switch function
for BSS charging/discharging at time t, PWEV tð Þ is the
power consumption for EV charging/discharging at time
t, and OEV tð Þ is the switch function for EV charging/

discharging at time t. The switch functions, such as
Ogrid tð Þ, OPV tð Þ, OBSS tð Þ, and OEV tð Þ, are controlled by the
first objective function on the supply side. OBSS tð Þ and
OEV tð Þ can be determined using two methods: the con-
ventional method in (11) and the proposed method
in (12).

5.2.2 | Objective function for minimizing
peak load with DR program

A REP operates as a broker between the wholesale elec-
tricity market and consumers in the energy market. The
profit of REPs is calculated by subtracting the income from
selling energy and the cost of purchasing energy from the
wholesale market or the cost of providing services. The
cost function of the REP must be used to estimate an opti-
mal retail price and to incentivize clients to adopt certain
power consumption habits. The second objective function
is presented to minimize the peak load while considering
electricity costs with the DR program. Because SMGW has
low load capacity, the maintenance costs of the overall sys-
tem can become high within a few hours of the peak load.
Therefore, reducing the peak load by several hours can
help reduce the maintenance cost of the entire system and
robustly design the system. The smart metering system
can schedule shiftable loads depending on the proposed
power management. However, non-shiftable and inter-
ruptible loads cannot be scheduled, and power must be
supplied for these loads immediately when required.

min
Oshiftable;1 tð Þ,…,
Oshiftable;I tð Þ,
Onon�shiftable;1 tð Þ,…,
Onon�shiftable;J tð Þ,
Ointeruptible;1 tð Þ,…,
Ointeruptible;K tð Þ,
PWPV tð Þ, OPV tð Þ

0BBBBBBBBBBBBBB@

1CCCCCCCCCCCCCCA

PI
i¼1

PWshiftable;i tð Þ�Oshiftable;i tð Þ

þPJ
j¼1

PWnon�shiftable;j tð Þ�Onon�shiftable;j tð Þ

þPK
k¼1

PWinterruptible;k tð Þ�Ointerruptible;k tð Þ

�PWPV tð Þ �OPV tð Þ

26666666666664

37777777777775 �DR tð Þ,

ð10Þ

where PWshiftable,i tð Þ is the power consumption for ith
shiftable load at time t, Oshiftable,i tð Þ is the switch function
for ith shiftable load at time t, PWnon�shiftable,j tð Þ is the
power consumption for jth non-shiftable load at time t,
Onon�shiftable,j tð Þ is the switch function for jth non-
shiftable load at time t, PWinterruptible,k tð Þ is the power con-
sumption for kth interruptible load at time t, and
Ointerruptible,k tð Þ is the switch function for kth interruptible
load in energy resources at time t. DR tð Þ describes price-
based DR program at time t. Oshiftable,1 tð Þ, …, Oshiftable,i tð Þ,
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Onon�shiftable,1 tð Þ, …, Onon�shiftable,j tð Þ, and Ointerruptible,1 tð Þ,
…, Ointerruptible,k tð Þ are controlled by the second objective
function on the demand side.

5.3 | Optimal BSS/EV charging/
discharging method

In power management, the charging/discharging mode
of BSS/EV is determined based on the comparison of the
grid power consumption and PV power consumption, as
well as the state of charge (SOC) value of BSS/EV.

5.3.1 | Conventional BSS/EV charging/
discharging method

The charging/discharging mode of BSS/EV at time t is
represented by the switching functions OBSS tð Þ and
OEV tð Þ, respectively. The owner of BSS/EV determines
the desired charging time interval, and the minimum
SOC value of EV when charging is completed. The SM
operator can decide the timing of the charging/
discharging of BSS/EV to increase the overall profit and

energy efficiency of the smart metering system. The
values of the switching functions OBSS tð Þ and OEV tð Þ are
determined by the charging/discharging conditions
relevant to the grid power consumption, PV
power consumption, and SOC of BSS/EV, given as
follows:

OBSS tð Þ, OEV tð Þ¼

�1ðdischargingÞ If PWgrid tð Þ�PWPV tð Þ>PWmax
� �

and SOC tð Þ>SOCminð Þ

þ1ðchargingÞ If PWgrid tð Þ�PWPV tð Þ<PWmax
� �

and SOC tð Þ<SOCmaxð Þ
0ðidleÞ otherwise

8>>>>>>><>>>>>>>:
,

ð11Þ

where PWmax is the maximum limit of power consump-
tion, SOC tð Þ is the SOC of BSS/EV at time t, SOCmin is

the minimum limit SOC of BSS/EV, and SOCmax is the
maximum limit SOC of BSS/EV. For BSS/EV, the opera-
tional mode can be indicated by �1 (discharging), +1
(charging), and 0 (idle). In the conventional BSS/EV
charging/discharging method, if the difference between
grid power consumption and PV power consumption is
larger than PWmax and the SOC values of BSS/EV are
higher than SOCmin , the discharging mode is assigned to
BSS/EV. If the difference between grid power consump-
tion and PV power consumption is less than PWmax and
the SOC values of BSS/EV are lower than SOCmax , the
charging mode is assigned to BSS/EV. Otherwise, idle
mode is assigned to BSS/EV.

5.3.2 | Proposed BSS/EV charging/
discharging method

When considering the proposed power management,
anomaly detection is used for the stable charging/
discharging of BSS/EV. Furthermore, power manage-
ment can be efficiently and robustly achieved by finding
an abnormal state of the predicted future values, as fol-
lows:

where PWgrid tð Þ is the grid power consumption at time t,dPWgrid tð Þ is the reconstructed input value of the grid
power consumption of GCN-BiLSTM autoencoder at time
t, PWPV tð Þ is the PV power consumption at time t, and
OLSTM tð Þ is the abnormal detection parameter at time t.
In the proposed BSS/EV charging/discharging method,
the operational mode of BSS/EV, which is composed of
�1 (charging), +1 (discharging), and 0 (idle), is deter-
mined by comparing the difference in the grid power
consumption and PV power consumption, including the
abnormal detection parameter and the maximum limit of
power consumption. If an outlier or a missing value is
not detected in the process of measuring the grid power
consumption through the GCN-BiLSTM autoencoder, the
conventional BSS/EV charging/discharging method can
be applied as mentioned in (11). However, if an outlier or

OBSS tð Þ, OEV nð Þ¼

�1ðdischargingÞ If max PWgrid tð Þ�OLSTM tð Þ,dPWgrid tð Þ
� 	� 	

�PWPV tð Þ
� 	

>PWmax

and SOC tð Þ>SOCminð Þ

þ1ðchargingÞ If max PWgrid tð Þ�OLSTM tð Þ,dPWgrid tð Þ
� 	� 	

�PWPV tð Þ
� 	

<PWmax

and SOC tð Þ<SOCmaxð Þ
0ðidleÞ otherwise

,

8>>>>>>>>><>>>>>>>>>:
ð12Þ

LEE ET AL. 659



a missing value is detected in the process of measuring
the grid power consumption with the GCN-BiLSTM auto-
encoder, the value can be replaced by dPWgrid tð Þ, as stated
in (12) to determine the charging/discharging mode of
BSS/EV. The charging/discharging condition relevant to
the SOC value is applied similarly to the conventional
method. In the proposed BSS/EV charging/discharging
method, two functions, outlier detection and missing
value imputation, are added to establish a secure and
robust BSS/EV charging/discharging method.

6 | PERFORMANCE EVALUATION

6.1 | DR program for peak, progressive,
and climate

DR program is composed of three types of electricity
rates, including time of use (ToU)-based electricity rate,
progressive-based electricity rate, and climate change and
environmental charge rate, and they are shown as

DR¼ RTOU,RPROG,RCCECð Þ, ð13Þ

RTOU ¼

0:06$=kWh off�peakð Þ If 23 : 00< t≤ 09 : 00ð Þ

0:12$=kWh mid�peakð Þ If

09 : 00< t≤ 10 : 00

12 : 00< t≤ 13 : 00

17 : 00< t≤ 23 : 00

0BB@
1CCA

0:18$=kWh on�peakð Þ If
10 : 00< t≤ 12 : 00

13 : 00< t≤ 17 : 00

!

8>>>>>>>>>><>>>>>>>>>>:
,

ð14Þ

RPROG ¼
0:008$=kWh If PWtotal ≤ 300kWhð Þ
0:018$=kWh If 301kWh<PWtotal ≤ 450kWhð Þ
0:027$=kWh If 450kWh<PWtotalð Þ

8><>: ,

ð15Þ

RCCEC ¼RRPSþRETSþRCGR, ð16Þ

where RTOU is the ToU-based electricity rate, RPROG is the
progressive-based electricity rate, RCCEC is the climate
change and environmental charge rate, RRPS is the renew-
able portfolio standard electricity rate, RETS is the emis-
sion trading system electricity rate, and RCGR is the coal
generation reduction electricity rate. PWtotal is the total
power consumption, which is calculated from the sum of
the power consumption for shiftable, non-shiftable, and
interruptible loads. RTOU varies depending on off-peak,
mid-peak, and on-peak time intervals mentioned in (14).
RPROG is determined, depending on the amount of PWtotal

stated in (15), and RCCEC is calculated from the sum of
RRPS, RETS, and RCGR introduced in (16).

6.2 | Training setup and results for
autoencoder

In unsupervised learning of the GCN-BiLSTM autoenco-
der, the anomaly detection model is trained with only a
normal dataset of gas, electric, water, heating, and hot
water, which the SMGW collects from 900 households,
except for outliers and missing values. Outliers and miss-
ing values are detected by the local outlier factor and K-
nearest neighbor algorithm, respectively. Only normal
data are used in the training of the GCN-BiLSTM autoen-
coder. Normal and abnormal data are used for perfor-
mance validation, and the analysis of the area under the
curve (AUC)—receiver operating characteristic (ROC)
curve for GCN-BiLSTM, BiLSTM, and LSTM autoenco-
ders with load dataset shown in Figure 6 in Section 5.1.2
is performed. The abnormal dataset, which accounts for
0.8% of the entire dataset, is included in the simulation of
power management with anomaly detection. The train-
ing parameters of the GCN-BiLSTM autoencoder are as
follows: The ADAM optimization algorithm is used with
a learning rate of 0.001, a total number of 200 training
epochs, and a batch size of 128. The performance of the
model with a testing dataset was often worse when
trained with large batches compared to the performance
obtained from small batches with spikes [52]. Small
batches with spikes are typically used in training to get
better performance despite fluctuations during training
[53]. The loss function represents the MSE. Inadequate
learning rates may result in a local minimum and overfit-
ting. Dropout and gradients are used to avoid the local
minima. The training of the GCN-BiLSTM autoencoder
is performed by randomly splitting the entire dataset into
80% of the training dataset and 20% of the validation
dataset, as shown in Figure 5. The GCN-BiLSTM autoen-
coder has five types of input features (gas, electric, water,
heating, and hot water). In Table 1, accuracy, precision,

F I GURE 5 Training of GCN-BiLSTM autoencoder
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recall, F1, and MSE are illustrated, using the confusion
matrix, which consists of accuracy = (TP + TN)/
(TP + FN + FP + TN), precision = TP/(TP + FP),
recall = TP/ (TP + FN), and F1 = 2 * precision * recall/
(precision + recall). TP, TN, FP, and FN are four classifi-
cation results, denoting true positive, true negative, false
positive, and false negative, respectively. The AUC-ROC
curve, a widely used performance measure for binary
classification problems, is considered in this study. The
AUC values for GCN-BiLSTM, BiLSTM, and LSTM auto-
encoders, shown in Figure 6, are 0.971, 0.961, and 0.94,
respectively.

6.3 | Simulations of power management

In the simulation, it is assumed that various electrical
appliances can be controlled with multi-objective optimi-
zation, and they operate with five types of integrated
energy resources. Power management is performed by
scheduling the controllable electric appliances through
multi-objective optimization in the smart metering sys-
tem, simultaneously considering the electricity consump-
tion dataset of five types of energy resources. Scenario
1 is power management for baseline with multi-objective
optimization and the conventional BSS/EV charging/dis-
charging method without an autoencoder. Scenarios 2–4
are the proposed power management with conventional
LSTM, BiLSTM, and GCN-BiLSTM autoencoder, respec-
tively. The gas, electric, water, heating, and hot water
data, except the outliers obtained from anomaly detec-
tion, are described as an interruptible load in the power
management.

In Figure 7A, the power consumption of shiftable,
non-shiftable, and interruptible loads measured by the
smart metering system shows the variation of the average
power consumption of the 900 households based on four
scenarios. Scenarios 1–4 are indicated by a solid blue line,
solid red line, dotted sky blue line with a circle marker,
and dotted black line with a triangle marker, respectively.
Scenario 1 leads to the highest peak load of 3.7 kW, as
shown in Table 1. Because renewable energy is abundant
and the charging/discharging of BSS/EV is actively

achieved in the afternoon, the peak load occurs around
20:00. In Scenarios 2–4, charging/discharging of BSS/EV
with the autoencoder is more active than Scenario
1, resulting in reduced grid power consumption. Further-
more, it affects the reduction of peak load and electricity
costs. Scenario 4 demonstrates better power management
than Scenarios 1–3 because the autoencoder uses a more
accurate GCN-BiLSTM network than the conventional
LSTM and BiLSTM networks.

Figure 7B depicts the average BSS/EV power con-
sumption of 900 households based on the four scenarios.
The charging rate of BSS/EV is 1–3 kW, and the charg-
ing/discharging operation of BSS/EV is activated in the
order of Scenarios 4, 3, 2, and 1. The HVAC power con-
sumption of the smart metering system is presented in
Figure 7C. Since all four scenarios assume the same
HVAC operating conditions, the power consumption of
HVAC is identical, regardless of the scenario. Figure 7D
depicts the power consumption of the electric appliances
measured by the smart metering system, which shows
similar power consumption levels within the four scenar-
ios, as shiftable loads are similarly scheduled depending
on other load demands.

TAB L E 1 Simulation results

Category Accuracy Precision Recall F1 MSE Peak load Electricity cost

Scenario 1 - - - - - 3.7 kW $44.8

Scenario 2 0.9925 0.9997 0.99976 0.99626 0.34 3.1 kW $31.7

Scenario 3 0.99336 0.99348 0.99984 0.99665 0.32 2.8 kW $30.5

Scenario 4 0.99293 0.99302 0.99988 0.99644 0.31 2.8 kW $30.3

F I GURE 6 Performance validation using receiver operating

characteristic (ROC) curve for three autoencoders with load dataset
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Table 1 lists the simulation results based on Scenarios
1–4. The comparison of performance measurements of
the autoencoders for Scenarios 2–4 are conducted based
on accuracy, precision, recall, F1, and MSE. The results
indicate that the performance of the GCN-BiLSTM auto-
encoder is better than that of the conventional LSTM
autoencoder and Bi-LSTM autoencoder. Notably, the
GCN-BiLSTM autoencoder used in Scenario 4 produces
the best results in terms of the reduction of peak load
and electricity costs with the smart metering system.

7 | CONCLUSION

Power management with anomaly detection achieved by
a novel smart metering system was proposed in this
study. The proposed scheme is featured by AMI, SM data
processing procedure, smart metering cloud system
design, and five types of energy resources: gas, electric,
water, heating, and hot water. SM data were obtained
from 900 households. An autoencoder with a GCN-
BiLSTM network was used to find outliers and missing
values for anomaly detection of five types of energy
resources, and its prediction accuracy was evaluated. The
proposed power management was implemented, consid-
ering charging/discharging of BSS/EV. For power man-
agement, multi-objective optimization was carried out
with an objective function to maximize the profit of REPs
and minimize the grid dependency and another function
to minimize the peak load while considering the DR pro-
gram. In the simulations, the performance of the autoen-
coders was evaluated in terms of accuracy, precision,
recall, F1, and MSE. The autoencoder using the GCN-
BiLSTM network enabled more reduced peak load and
electricity costs through more accurate anomaly detec-
tion. The proposed power management with the func-
tionality of anomaly detection in the smart metering
system reduced the three types of tariff-based electricity.
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