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Abstract: The deployment of sensors for Structural Health Monitoring requires a complicated 

network arrangement, ground truthing, and calibration for validating sensor performance 

periodically. Any conventional sensor on a structural element is also subjected to static and 

dynamic vertical loadings in conjunction with other environmental factors, such as brightness, 

noise, temperature, and humidity. A structural model with strain gauges was built and tested to get 

realistic sensory information. This paper investigates different deep learning architectures and 

algorithms, including unsupervised, autoencoder, and supervised methods, to benchmark blind 

drift calibration methods using deep learning. It involves a fully connected neural network (FCNN), 

a long short-term memory (LSTM), and a gated recurrent unit (GRU) to address the blind drift 

calibration problem (i.e., performing calibrations of installed sensors when ground truth is not 

available). The results show that the supervised methods perform much better than unsupervised 

methods, such as an autoencoder, when ground truths are available. Furthermore, taking advantage 

of time-series information, the GRU model generates the most precise predictions to remove the 

drift overall. 
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Sensor networks are usually composed of a group of small and inexpensive sensors capable of 

measuring, gathering, processing, and communicating. Sensor networks are designed to monitor 

the environment and structural health, collect and process the sensing data, and transmit the 

information to end-users, typically consisting of tens to hundreds or even thousands of sensors. For 

instance, civil structures generally are large and very complex. An extensive network of sensors is 

required to assess their condition accurately. Furthermore, most structural health monitoring 

systems are customized for particular structural elements and, therefore, not easily scalable for 

entire structures. However, many critical applications of sensor networks have been, including 

remote sensing, environment monitoring, and surveillance.  

Considering a scenario where a set of sensors are deployed to monitor a field of interest in the 

long term, from these measurements, physical quantities, such as pressure, temperature, and 

substructures change over time, can be computed. However, certain element defects, such as the 

fatigue change of the steel shapes, the deformation of plastic components, the over-heating of the 

battery, etc., can lead to inaccurate measurement readings. Such measurement errors worsen over 

time, known as the sensor drift problem. In practice, it is extremely time-consuming and requires a 

lot of manpower to unmount and re-calibrate the deployed sensors against the ground truth. This 

often even becomes impractical in many situations. Calibrating the sensors without the ground truth 

data is referred to as the blind calibration problem [1]. The blind drift calibration problem can be 

generalized for sensor network applications in many systems. Successfully calibrating deployed 

sensors without ground truth can significantly reduce the maintenance cost and workforce needs. 

Clearly, if there is only one sensor, it is impossible to calibrate it if the ground truth is 

unavailable. Thus, the rationale behind blind drift calibration is to find an alternative calibration 

reference based on the observed (drifted) measurements from the other sensors. The classical blind 

calibration methods [2,3,4,5] rely on pre-defined rules for feature extraction and/or application-

related assumptions, such as linearity of data space or sparse drift.  

Assuming that the 𝑁 sensors are deployed to an environment with signal sources in a space with 

𝑆 true dimensions, provided 𝑆 < 𝑁, the drift-free measurements lie in a low-rank 𝑆-dimensional 

signal subspace. The signal null subspace is a complement of the signal space, which is fully driven 

by the sensor drifts, [6], which is also low-dimensional. Given the measuring 𝑌 = 𝑋 + 𝐷, where 𝑋 

is the actual data and 𝐷 is the drift, then, there exists a projection function 𝑃(∙) projecting the 

measurement 𝑌 onto the signal null subspace such that 

                                                𝑃(𝑌) = 𝑃(𝑋 + 𝐷) = 𝑃(𝐷)                                                       (1) 

The importance of the projection function 𝑃(∙) is that it eliminates the unknown ground truth 

signals and obtains a projected observation of the drift. Recovering from the projected drift allows 

us to estimate the drift and then the drift-free measurements. [1] assumed a linear project 𝑃(∙) and 

demonstrated success in calibrating drift in wireless sensor networks. However, this approach is 

limited by the linearity assumption, which can only recover some but not all drifted sensors. The 

recent advance in deep learning methods [7] allows us to avoid the linearity limitation and obtain 

recovery with potentially higher accuracy for broader applications 

The objective of this work is to investigate deep learning architectures and algorithms for the 

blind drift calibration problem in more practical and complex experimental setups. In this paper, we 

design a structure lab testbed to model structural components and systems in bridges or building 

structures, which is an ideal testbed to mimic the real-life sensing environment with drifts. The 

structure lab testbed is set up with two sets of sensors in every position – one is timely calibrated, 

providing the ground truth data while the other is uncalibrated. The actuators applied to the 

structures are used to generate drift patterns. We implement several deep learning algorithms, 
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including autoencoder [8], FCNN, LSTM [9], and GRU [10], for blind drift calibration. We then 

compare the performance of these deep learning blind drift calibration methods on real experimental 

senor data from the structure lab testbed. 

2. STRUCTURE LAB TESTBED 

Data collection from the structure lab testbed is orchestrated using Micro-Measurements 

StrainSmart Data Acquisition Software. The Structure Lab at Old Dominion University is equipped 

with a Micro-Measurements System 7000 (Figure 1), which is utilized to collect data for use in 

training the deep learning algorithms. To generate the data for collection, Micro-Measurements 

CEA series, 120 Ohm, 240UZA strain gauge sensors are attached to the structure to measure strain 

over time. 

 

Figure 4. Micro-Measurements System 7000 (Micro Measurements, 2021) 

Based on Old Dominion University's Structure Laboratory, the testbed design implements three 

main components. The structure itself, as shown on the right in Figure 2, is modeled after a truss 

bridge design seen commonly in modern roadway infrastructure. The structure made of steel is 

composed of eight stacked segments, each measuring 6" by 6" by 12". To simulate structural load, 

a simple hydraulic load cell is affixed to the base of the structure. The top of the structure is held in 

place by a steel assembly sturdy enough such that the structure can buckle long before the assembly 

can budge. Lastly, to measure strain on the structure due to force applied by the load cell, 32 strain 

gauges are affixed to various points all over the structure. A diagram of gauge placement is shown 

in Figure 3. Effectively, only 16 strain gauges are measuring strain throughout the structure as 

gauges are arranged in pairs. One gauge in the pair would be calibrated often to act as the ground 

truth measurement of the pair. The other gauge remains uncalibrated to allow drift to occur.  

 

Figure 5. A segment of the Structure Lab Structure 

For our blind drift calibration testing, long periods of constant sensor measuring are required for 

sensor drift to start occurring. To account for this, test runs are conducted weekly. Initially, all 32 

strain gauges are zeroed and calibrated while the structure had no load applied to it. The data 
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acquisition is initiated and then a constant load is applied to the structure to introduce a constant 

strain to be measured. Measurements are recorded at a rate of 1 reading per second from each strain 

gauge and are recorded for a continuous 7 days. The strain gauges measure strain on the structure 

which is then converted into voltage units and recorded. After 7 days, sensor measurements are 

halted, and data is downloaded and parsed for use in training the deep learning algorithms. Then, 

the ground truth sensor subset is calibrated, and the gauge measurement is initiated again. By not 

calibrating the other half of the sensor pairings, drift on these sensor readings will continue to grow 

as each weekly test concludes, producing ideal training data for our use. 

 

Figure 6. Rotated Strain Gauge Layout on Structure Faces 

3. DEEP LEARNING-BASED BLIND DRIFT CALIBRATION 

We compare four deep learning architectures in their ability to solve the blind drift calibration 

problem, an autoencoder, a fully connected neural network (FCNN), a long short-term memory 

(LSTM), and a gated recurrent unit (GRU).   

The input of each model is a 16 x 1 vector of sensor readings at a single timestep, where each 

entry represents a reading from a gauge sensor, and the desired outputs are the calibrated sensor 

readings. We split our data into training and testing sets using sensor data of the first 200,000 time 

steps as the training set and the remaining 128,264 time steps as our testing set. We decide to use a 

large, long-term test set to test our machine learning abilities to produce calibrated outputs as the 

drift increased. To preprocess the sensor readings for input to our networks, the training and testing 

sets are normalized by subtracting the mean and dividing by the standard deviation of all sensor 

readings in the training set. The autoencoder is trained using unsupervised learning with the 

uncalibrated sensor readings as input as well as output, where the mean squared error (MSE) is used 

as the loss function. The FCNN, LSTM, and GRU are trained using supervised learning with the 

uncalibrated sensor readings as input to the networks and MSE loss is computed between the 

model's output and the ground truth sensor readings. Each of our networks is trained for 400 epochs 

using the Adam optimizer [11] to minimize the MSE loss and the best model with the smallest 

validation error is saved.  
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Figure 4. The architecture of the autoencoder neural network for blind drift calibration. 

An autoencoder learns a dimensionally reduced representation of input samples using an 

encoder, then uses a decoder to convert the dimensionally reduced representation back into the 

original input. The goal of our autoencoder is to learn a latent space to remove drift and recover 

drift free measurements. The autoencoder architecture we developed is a twelve-layer neural 

network (Figure 4). The twelve layers are dense, fully connected layers. The first six layers are the 

encoder portion of the autoencoder. The encoder first increases the dimensions and then decreases 

the dimensions into the latent space. The sixth layer's output is the final encoding into the latent 

space. The final six layers are the decoder portion of the autoencoder, converting the latent space 

back into the output dimensions. As with the encoder, the decoder increases the dimensions and 

then decreases the dimensions in the subsequent layers into the output dimensions. Each of the 

dense layers uses a rectified linear unit (ReLU) activation function except for the final dense layer, 

which uses a linear activation function. Each layer except for the final layer is followed by a dropout 

layer with a dropout rate of 0.4 to prevent overfitting.  

A fully connected neural network uses a fully connected architecture between layers where each 

neuron in one layer is connected to each neuron in the following layer. When trained using 

supervised learning, an FCNN can learn internal relationships to convert inputs into target outputs. 

The FCNN we developed uses a similar architecture as the autoencoder but uses a much larger sixth 

layer with 512 units. Unlike autoencoder, the training of FCNN is supervised using the calibrated 

ground truth sensor data (Figure 5). 

 
Figure 5. The architecture of a fully connected neural network (FCNN) for blind drift calibration 

An LSTM is a form of recurrent neural network which uses feedback connections to pass data 

sequentially through each cell. Compared to FCNN, which only considers the input of the current 

time step, LSTM takes advantage time series information to remove drift. Each cell has memory 

mechanisms that enable the network to remember values over time intervals. The cells operate on 

data sequentially in time steps with a cell for each time step. Each cell takes the current time step 

value, the short-term memory state from the previous cell, and the cells' long-term memory state as 

input. LSTM's cells have three gates an input gate, forget gate, and an output gate. The input gate 
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decides the information to store in its long-term memory state, the forget gate decides which 

information to keep or discard, and the output gate uses the current time step, previous cells’ short 

term memory, and current cell's new long-term memory to compute the short-term memory to pass 

to the sequential cell. In our LSTM, we use bidirectional LSTMs, which operate on the input from 

the beginning to the end and then from the end to the beginning, concatenating the two outputs. The 

LSTM architecture we developed is a seven-layer neural network (Figure 6). The seven layers are 

three stacked bidirectional LSTM layers followed by an average pooling and a flattening layer, then 

followed by three dense layers. Each LSTM layer returns the full sequences generated by each unit, 

creating a two-dimensional output. Each of the stacked bidirectional LSTM layers has the same 

number of units keeping the output dimensions the same as it passes through each layer. The fourth 

layer is an average pooling and flattening layer to convert the two-dimensional output of the LSTMs 

into a one-dimensional output. The final three dense layers convert the output of the LSTM into the 

output dimensions. Each bidirectional LSTM layer uses the standard hyperbolic tangent activation 

function and sigmoid recurrent activation function. The dense layers use linear activation functions. 

A dropout layer follows each layer with a dropout rate of 0.4 except for the final layer. 

 

Figure 6. The architecture of LSTM for blind drift calibration. 

A GRU is another form of the recurrent neural network, much like the LSTM, with only two 

gates: an update gate and a reset gate. Like the LSTM, the GRU operates on the data in time steps 

sequentially. The update gate decides the previous information to be passed to the next cell, and the 

reset gate decides how much information to discard before passing the state to the next cell. This 

architecture is similar to the LSTM but without the internal long-term memory stored in each cell 

and the gates performing different operations. Like the LSTM, we use bidirectional GRU layers 

that operate on the input from the beginning to the end and from the end to the beginning, 

concatenating the two outputs. The GRU architecture we developed is an eight-layer neural network 

(Figure 7). The first three layers are stacked with bidirectional GRU's. Each GRU returns the full 

sequence generated by each unit, creating a two-dimensional output. The number of units of each 

bidirectional GRU increases at each layer. As with the LSTM, the fourth layer is an average pooling 

and flattening layer to convert the two-dimensional output of the GRU's into a one-dimensional 

output. The final four layers are dense layers that convert the output of the GRUs into the output 

dimensions. The stacked bidirectional GRU's all use the standard hyperbolic tangent activation 

function and sigmoid for the recurrent activation function. Each dense layer uses a linear activation 

function. All layers except for the output layer are followed by a dropout layer with a dropout rate 

of 0.4. 
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Figure 7. The architecture of GRU for blind drift calibration. 

4. RESULTS 

Table 1 compares the prediction results of autoencoder, FCNN, LSTM, and GRU on the test set. 

One can find that compared to unsupervised autoencoder, the supervised learning methods using 

FCNN, LSTM, or GRU yield significantly more precise predictions. Among the supervised learning 

methods that take advantage of the available ground truth from the calibrated sensors, the GRU 

achieves the lowest MSE loss during testing. MSEs of reconstructed errors on the test set are 

evaluated between the network's output using the uncalibrated sensor as input and the ground truth. 

Table 3. Comparison of MSEs in autoencoder, FCNN, LSTM, and GRU  

Network 

Testing MSE 

Loss 

Autoencoder  5.62E-01 

FCNN  7.04E-04 

LSTM  6.84E-04 

GRU   4.67E-04 

 

Figure 8 shows the 100-time step average of the ground truth sensor reading in the test set while 

Figure 9 shows the corresponding predictions of autoencoder, FCNN, LSTM, and GRU. One can 

find that each deep learning model except for the autoencoder learns to recover from the drifted 

measurements while keeping the general trends of the calibrated sensor. The FCNN, LSTM, and 

GRU generate similar results, but the GRU achieves the best performance by recovering from the 

most drift and closely following the trends of the calibrated sensors, thanks to taking advantage of 

the time series information. In contrast, the autoencoder fails to model the trends of the drift free 

measurements.  

 

Figure 8. 100-time step average of the ground truth sensor readings in the test set. 
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Figure 9. 100-time step average of the predictions of autoencoder, FCNN, LSTM, and GRU 

on the test set. 

We further examine the predictions of the supervised learning models in more detail without 

100-time steps averaging. In Figure 10, the uncalibrated sensor SG7 is shown in comparison to each 

of our model's predictions and the ground truth sensor SG8. One can find that the LSTM predicts 

the drift higher than the ground truth and overcompensates on the upward trends of the uncalibrated 

sensor. The supervised learning models all have a reasonable agreement with the ground truth. The 

FCNN model follows the trends of the calibrated sensor closely but fails to recover from all the 

drift from time steps 80,000+. The GRU model achieves the most recovery from drift but under 

compensates for the upward trends of the calibrated sensor. The unsupervised autoencoder outputs 

an almost straight line without correctly modeling the calibrated sensors' trends. 

 

 
Figure 10. The comparison of SG7 and SG8 Sensors 

 

The top figure shows the testing data of uncalibrated sensor SG7's readings. The bottom figure 

shows the network predictions using uncalibrated sensor SG7 in comparison to calibrate sensor 

SG8. 
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5. CONCLUSION 

We build a structural model testbed to benchmark various deep learning blind drift calibration 

methods. Overall, the supervised learning architectures achieve good results in recovering from 

drifted measurements while closely following the trends of the calibrated sensor. The GRU model 

achieves the overall best results on our test set. The recurrent neural network models promise to 

remove drift and model the trends using their recurrent and memory mechanisms compared to the 

autoencoder and FCNN. The GRU and LSTM have robust memory mechanisms for time series, 

which can allow them to maintain states which can produce precise predictions close to drift free 

measurements.  

Our future research will be on more powerful machine learning methods, such as ensemble-

based approaches to integrate multiple deep learning models, to achieve better blind drift calibration 

enhancement. We will also further compare deep learning models with classical blind drift 

calibration methods on the structure lab testbed.  

ACKNOWLEDGMENTS 

This work is supported by ONR RSLP 2020-21 project. We thank Joanne Pilcher for helpful 

discussions. 

REFERENCES 

[1] L. Balzano, R. Nowak, "Blind calibration of sensor networks," Proceedings of ACM/IEEE 

International Conference on Information Processing in Sensor Networks, 2007. 

[2] R. Tan, G. Xing, Z. Yuan, X. Liu, J. Yao, "System-level calibration for data fusion in wireless 

sensor networks," ACM Transactions on Sensor Network, 9(3), 2013. 

[3] C. Xiang, P. Yang, C. Tian, H. Cai, Y. Liu, "Calibrate without calibrating: An iterative approach 

in participatory sensing network," IEEE Trans. Parallel Distrib. Syst., 26(2): 351–361, 2015. 

[4] V. Bychkovskiy, S. Megerian, D. Estrin, "A collaborative approach to in-place sensor 

calibration," Proceedings of ACM/IEEE International Conference on Information Processing in 

Sensor Networks, 2013. 

[5] C. Dorffer, M. Puigt, G. Delmaire, and G. Roussel, "Blind mobile sensor calibration using an 

informed nonnegative matrix factorization with a relaxed rendezvous model," Proceedings of 

International Conference on Acoustics, Speech, and Signal Processing, 2016. 

[6] Y. Wang, A. Yang, Z. Li, X. Chen, P. Wang, H. Yang, "Blind drift calibration of sensor 

networks using sparse Bayesian learning," IEEE Sensors J., 16(16): 6249–6260, 2016. 

[7] Y. Wang, A. Yang, X. Chen, P. Wang, Y. Wang, H. Yang, "A Deep Learning Approach for 

Blind Drift Calibration of Sensor Networks," IEEE Sensors Journal, 17(13): 4158–4171, 2017. 

[8] G. E. Hinton, R. R. Salakhutdinov, "Reducing the Dimensionality of Data with Neural 

Networks", Science, 313: 504-507, 2006. 

[9] S. Hochreiter, J. Schmidhuber, “Long Short-Term Memory,” Neural Computation, 9(8): 1735-

1780, 1997. 

[10] K. Cho, B. van Merrienboer, C. Gulcehre, D. Bahdanau, F. Bougares, H. Schwenk, Y. Bengio, 

"Learning Phrase Representations using RNN Encoder-Decoder for Statistical Machine 

Translation," arXiv:1406.1078, 2014. 

[11] D. P., Kingma, J. Ba. "Adam: A method for stochastic optimization." arXiv:1412.6980, 2014. 

  


