• Title/Summary/Keyword: LSGM electrolyte

Search Result 19, Processing Time 1.153 seconds

Study on catalyst infiltration into the porous LSGM scaffold typed anode for LSGM electrolyte (LSGM 기반의 IT-SOFC를 위한 Infiltration 기법을 이용한 다공성의 LSGM 연료극 형성에 관한 연구)

  • Yoon, Byoung Young;Kim, Junghyun;Bae, Joongmyun
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2011.11a
    • /
    • pp.85.2-85.2
    • /
    • 2011
  • 현재 중온의 고체산화물 연료전지를 위해 다양한 전해질에 대한 연구되었으며 1994년 Ishihara et al.에서 1074K의 온도에서 높은 이온전도도를 갖는 페록스카이 구조를 갖는 LSGM 물질을 발표하였다. Sr과 Mg을 도핑한 Lanthanum gallate는 이온전도도가 1073K에서 0.14S/cm로 YSZ의 5배로 높은 이온전도도를 갖고 있으며 산화환경에서부터 환원환경에서 화학적으로 안정한 특성을 갖고 있다. 또한 LSGM 전해질은 넓은 산소 농도범위에서 안정적인 특성을 갖는 장점을 갖고 있다. 그러나 LSGM은 가장 널리 사용되는 연료극의 Ni 촉매와 고온 소결시 상호확산현상에 의한 2차상을 생성시켜 성능 저감의 원인으로 그 해결방안이 요원한 실정이다. 이에 본 논문에서는 LSGM 전해질에 LSGM scaffold를 형성하고 형성된 scaffold에 연료극 촉매 solution을 infiltration 시켜 저온에서 anode를 형성하여 그 성능을 연구하였다.

  • PDF

Characterization of the LSGM-Based Electrolyte-Supported SOFCs (LSGM계 전해질 지지형 고체산화물 연료전지의 특성평가)

  • Song, Eun-Hwa;Kim, Kwang-Nyeon;Chung, Tai-Joo;Son, Ji-Won;Kim, Joo-Sun;Lee, Hae-Weon;Kim, Byung-Kook;Lee, Jong-Ho
    • Journal of the Korean Ceramic Society
    • /
    • v.43 no.5 s.288
    • /
    • pp.270-276
    • /
    • 2006
  • LSGM(($La_xSr_{1-x})(Ga_yMg_{1-y})O_3$) electrolyte is known to show very serious interfacial reaction with other unit cell components, especially with an anode. Such an interfacial reaction induced the phase instability of constituent component and deterioration of the unit cell performance, which become the most challenging issues in LSGM-based SOFCs. In this study, we fabricated LSGM($La_{0.8}Sr_{0.2}Ga_{0.83}Mg_{0.17}O_x$) electrolyte supported-type cell in order to avoid such interfacial problem by lowering the heat-treatment temperature of the electrode fabrication. According to the microstructural and phase analysis, there was no serious interfacial reaction at both electrolyte/anode and electrolyte/cathode interfaces. Moreover, from the electrochemical characterization of the unit cell performance, there was no distinct deterioration of the open cell voltage as well as an internal cell resistance. These results demonstrate the most critical point to be concerned in LSGM-based SOFC is either to find a proper electrode material which will not give any interfacial reaction with LSGM electrolyte or to properly adjust the processing variables for unit cell fabrication, to reduce the interfacial reaction.

Effect of the LDC Buffer Layer in LSGM-based Anode-supported SOFCs (LSGM계 음극지지형 고체산화물 연료전지에 적용된 LDC 완충층의 효과)

  • Song, Eun-Hwa;Chung, Tai-Joo;Kim, Hae-Ryoung;Son, Ji-Won;Kim, Byung-Kook;Lee, Jong-Ho;Lee, Hae-Weon
    • Journal of the Korean Ceramic Society
    • /
    • v.44 no.12
    • /
    • pp.710-714
    • /
    • 2007
  • LSGM$(La_{0.8}Sr_{0.2}Ga_{0.8}Mg_{0.2}O_{3-{\delta}})$ is the very promising electrolyte material for lower-temperature operation of SOFCs, especially when realized in anode-supported cells. But it is notorious for reacting with other cell components and resulting in the highly resistive reaction phases detrimental to cell performance. LDC$(La_{0.4}Ce_{0.6}O_{1.8})$, which is known to keep the interfacial stability between LSGM electrolyte and anode, was adopted in the anode-supported cell, and its effect on the interfacial reactivity and electrochemical performance of the cell was investigated. No severe interfacial reaction and corresponding resistive secondary phase was found in the cell with LDC buffer layer, and this is due to its ability to sustain the La chemical potential in LSGM. The cell exhibited the open circuit voltage of 0.64V, the maximum power density of 223 $mW/cm^2$, and the ohmic resistance of $0.17{\Omega}cm^2$ at $700^{\circ}C$. These values were much improved compared with those from the cell without any buffer layer, which implies that formation of the resistive reaction phases in LSGM and then deterioration of the cell performance is resulted mainly from the La diffusion from LSGM electrolyte to anode.

Interfacial Stability Between Anode and Electrolyte of LSGM-Based SOFCs (LSGM계 고체산화물 연료전지의 전해질-음극 사이의 계면안정성)

  • Kim, Kwang-Nyeon;Moon, Jooho;Son, Ji-Won;Kim, Joosun;Lee, Hae-Weon;Lee, Jong-Ho;Kim, Byung-Kook
    • Journal of the Korean Ceramic Society
    • /
    • v.42 no.7 s.278
    • /
    • pp.509-515
    • /
    • 2005
  • Interfacial reactions at LSGM electrolyte and NiO-GDC anode interfaces were thoroughly investigated with Environmental Scanning Electron Microscopy (ESEM-PHlLIPS XL-30) and Energy Dispersive X-ray (EDX-Link XL30). According to the analysis, serious reaction zone was observed at LSGM/NiO-GDC interface. It was found that the reaction layer was originated from the chemical reaction between NiO and LSGM. The reaction products were identified as La deficient form of LSGM based perovskite and Ni-La-O compounds such as LaSrGa$_{3}$O$_{7}$ and LaNiO$_{3}$ from the X-Ray Diffraction (XRD, Philips) analysis. According to the electrical characterization, interfacial layer was very electrically resistive which would be the cause of high internal resistance and low power generating characteristic of the unit cell.

Introduction of a Buffering Layer for the Interfacial Stability of LSGM-Based SOFCs (LSGM계 고체산화물 연료전지의 계면안정성을 위한 완층층의 도입)

  • Kim, Kwang-Nyeon;Moon, Jooho;Son, Ji-Won;Kim, Joosun;Lee, Hae-Weon;Lee, Jong-Ho;Kim, Byung-Kook
    • Journal of the Korean Ceramic Society
    • /
    • v.42 no.9 s.280
    • /
    • pp.637-644
    • /
    • 2005
  • In order to find a proper buffering material which can prohibit an unwanted interfacial reaction between anode and electrolyte of LSGM-based SOFC, we examined a gadolinium doped ceria and scandium doped zirconia as a candidate. For this examination, we investigated the microstructural and phase stability of the interface under different buffering layer conditions. According to the investigation, ceria based material induced a serious La diffusion out of the LSGM electrolyte resulted in the formation of very resistive $LaSrGa_3O_7$ phase at the interface. On the other hand zirconia based material was directly reacted with LSGM electrolyte and thus produced very resistive reaction products such as $La_2Zr_2O_7,\;Sr_2ZrO_4,\;LaSrGaO_4\;and\;LaSrGa_3O_7$. From this study we found that an improper buffering material induced the higher internal cell resistance rather than an interfacial stability.

Synthesis and Characterization of LSGM Solid Electrolyte for Solid Oxide Fuel Cell (연료전지용 LSGM 페로브스카이트계 전해질의 합성 및 특성 연구)

  • Seong, Young-Hoon;Jo, Seung-Hwan;Muralidharan, P.;Kim, Do-Kyung
    • Journal of the Korean Ceramic Society
    • /
    • v.44 no.12
    • /
    • pp.696-702
    • /
    • 2007
  • The family of (Sr,Mg)-doped $LaGaO_3$ compounds, which exhibit high ionic conductivity at $600-800^{\circ}C$ over a wide range of oxygen partial pressure, appears to be promising as the electrolyte for intermediate temperature solid oxide fuel cells. Conventional synthesis routes of (Sr,Mg)-doped $LaGaO_3$ compounds based on solid state reaction have some problems such as the formation of impurity phases, long sintering time and Ga loss during high temperature sintering. Phase stability problem especially, the formation of additional phases at the grain boundary is detrimental to the electrical properties of the electrolyte. From this point of view, we focused to synthesize single phase (Sr,Mg)-doped $LaGaO_3$ electrolyte at the stage of powder synthesis and to apply relatively low heat-treatment temperature using novel synthesis route based on combustion method. The synthesized powder and sintered bulk electrolytes were characterized by XRD, TG-DTA, FT-IR and SEM. AC impedance spectroscopy was used to characterize the electrical transport properties of the electrolyte with the consideration of the contribution of the bulk lattice and grain boundary to the total conductivity. Finally, relationship between synthesis condition and electrical properties of the (Sr, Mg)-doped $LaGaO_3$ electrolytes was discussed with the consideration of phase analysis results.

Effect of Interfacial Reaction Layer on the Electrochemical Performance of LSGM-Based SOFCs (LSGM계 고체산화물 연료전지의 전기화학적 성능에 미치는 계면반응층의 영향)

  • Kim, Kwang-Nyeon;Moon, Jooho;Kim, Hyoungchul;Son, Ji-Won;Kim, Joosun;Lee, Hae-Weon;Lee, Jong-Ho;Kim, Byung-Kook
    • Journal of the Korean Ceramic Society
    • /
    • v.42 no.10 s.281
    • /
    • pp.665-671
    • /
    • 2005
  • LSGM is known to show very serious interfacial reaction with other unit cell components, such as electrode, electrode functional or buffering layers. Especially, the formation of very resistive LaSr$Ga_{3}$$O_{7}$ phase at the interface of an anode and an electrolyte is the most problematic one in LSGM-based SOFCs. In this study, we investigated the interfacial reactions in LSGM-based SOFCs under different unit cell configurations. According to the microstructural analysis on the interfacial layer between an electrolyte and its neighboring component, serious interfacial reaction zone was observed. From the electrical and electrochemical characterization of the cell, we found such an interfacial reaction zone not only increased the internal ohmic resistance but also decreased the OCV(Open Cell Voltage) of the unit cell, and thus consequently deteriorated the unit cell performance.

Cell Properties for SOFC Using Synthesized Powder of Electrolyte LSGM System and Cathode LSM System (LSGM 전해질과 LSM 양극의 합성분말을 이용한 SOFC 단위전지의 특성)

  • Lee, Mi-Jai;Nam, Jeong-Hee;Choi, Byung-Hyun
    • Journal of the Korean Ceramic Society
    • /
    • v.39 no.4
    • /
    • pp.359-366
    • /
    • 2002
  • The purpose of this study is to investigate the properties of LSGM electrolyte and LSM cathode. The unit cell based on the optimum conditions and processing for high performance was fabricated and measured. The single phase of $LaGaO_3$ was obtained on sintering at $1500^{\circ}$ for 6h with composition of $(La_{0.85}Sr_{0.15})(Ga_{0.8}Mg_{0.2})O_{3-\delta}와 (La_{0.8}Sr_{0.2})(Ga_{0.8}Mg_{0.2})O_{3-\delta}$ and $(La_{0.85}Sr_{0.15})(Ga_{0.8}Mg_{0.2})O_{3-\delta}$. The grain size of the sintered body was about $10∼30{\mu}m$ and electrical conductivity was 0.13 S/cm measured at $800^{\circ}$. The single phase of $LaMnO_3$ structure in $(La1-xSrx)MnO_3$ system was obtained at x=0∼0.2 and the particle size of the synthesized powder was about 40 nm. The unit cell was prepared by firing at $1200^{\circ}$ for 1h with $(La_{0.9}Sr_{0.1})MnO_3$ cathode and 0.9NiO-0.1YSZ anode screen-printed on surfaces of $(La_{0.8}Sr_{0.2})(Ga_{0.8}Mg_{0.2})O_{3-\delta}$ electrolyte. The grain size of the electrode was close to $1{\mu}m$ and the electrode had porous structure. The maximum power density of unit cell showed $0.3W/cm^2$ at $800^{\circ}$.